化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5543-5551.DOI: 10.11949/0438-1157.20210716
收稿日期:
2021-05-26
修回日期:
2021-08-11
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
祁贵生
作者简介:
郭达(1993—),男,博士研究生,基金资助:
Da GUO(),Guisheng QI(
),Youzhi LIU,Weizhou JIAO,Wenchao YAN,Yusong GAO
Received:
2021-05-26
Revised:
2021-08-11
Online:
2021-11-05
Published:
2021-11-12
Contact:
Guisheng QI
摘要:
为了研究错流旋转填料床的质、热同传性能,采用热空气-氨水体系,考察了进气温度T、超重力因子β、液体喷淋密度q和气速u对错流旋转填料床传热性能的影响,在相同实验条件下对比了丝网填料和乱堆填料的传热性能。研究结果表明:气相体积传质系数kyae、体积传热系数(Ua)s随进气温度、超重力因子、气速、液体喷淋密度的增大而增大;传热效率ε、传热面积A随超重力因子、气速、液体喷淋密度的增大而增大;传热系数K随超重力因子、气速、液体喷淋密度的增大几乎不变,从而揭示了错流旋转填料床强化气液直接传热的机理是通过提高传热面积进而提高体积传热系数,而不是显著提高传热系数。在相同条件下,以丝网为填料时kyae和(Ua)s分别是乱堆填料的1.09~1.63倍和1.24~3.53倍。
中图分类号:
郭达, 祁贵生, 刘有智, 焦纬洲, 闫文超, 高雨松. 错流旋转填料床的质、热同传性能及传热机理研究[J]. 化工学报, 2021, 72(11): 5543-5551.
Da GUO, Guisheng QI, Youzhi LIU, Weizhou JIAO, Wenchao YAN, Yusong GAO. Research on mass and heat synchronous performance and heat transfer mechanism of cross-flow rotating packed bed[J]. CIESC Journal, 2021, 72(11): 5543-5551.
壳体高度/mm | 壳体外径/mm | 转子 | 填料类型 | 孔隙率 /% | 比表面积/ (m2/m3) | 材质 | ||
---|---|---|---|---|---|---|---|---|
高度h/mm | 外径r2/mm | 内径r1/mm | ||||||
172 | 133 | 70 | 124 | 30 | 丝网/乱堆 | 95%/93% | 780/239 | 不锈钢 |
表1 错流旋转填料床结构参数及填料规格
Table 1 Structural parameters of cross-flow rotating packed bed and packing specifications
壳体高度/mm | 壳体外径/mm | 转子 | 填料类型 | 孔隙率 /% | 比表面积/ (m2/m3) | 材质 | ||
---|---|---|---|---|---|---|---|---|
高度h/mm | 外径r2/mm | 内径r1/mm | ||||||
172 | 133 | 70 | 124 | 30 | 丝网/乱堆 | 95%/93% | 780/239 | 不锈钢 |
图1 错流旋转填料床传热实验流程图1—风机;2—缓冲罐;3—阀门;4—流量计;5—空气加热器;6—旋转填料床;7—储液槽;8—离心泵;9—废液槽;10—氨气回收槽
Fig.1 Flow chart of heat transfer experiment in cross-flow rotating packed bed
1 | 桑乐, 罗勇, 初广文, 等. 超重力场内气液传质强化研究进展[J]. 化工学报, 2015, 66(1): 14-31. |
Sang L, Luo Y, Chu G W, et al. Research progress of gas-liquid mass transfer enhancement in high gravity field[J]. CIESC Journal, 2015, 66(1): 14-31. | |
2 | Zhao H, Shao L, Chen J F. High-gravity process intensification technology and application[J]. Chemical Engineering Journal, 2010, 156(3): 588-593. |
3 | 邹海魁, 初广文, 向阳, 等. 超重力反应强化技术最新进展[J]. 化工学报, 2015, 66(8): 2805-2809. |
Zou H K, Chu G W, Xiang Y, et al. New progress of HIGEE reaction technology[J]. CIESC Journal, 2015, 66(8): 2805-2809. | |
4 | 刘有智. 超重力化工过程与技术[M]. 北京: 国防工业出版社, 2009. |
Liu Y Z. Chemical Engineering Process and Technology in High Gravity [M]. Beijing: National Defense Industry Press, 2009. | |
5 | Qi G S, Ren H Y, Zhang S J, et al. Dust removal performance in counter airflow shear rotating packed bed[J]. Process Safety and Environmental Protection, 2019, 127: 16-22. |
6 | Qi G S, Liu Y Z, Jiao W Z. Study on industrial application of hydrogen sulfide removal by wet oxidation method with high gravity technology[J]. China Petroleum Processing & Petrochemical Technology, 2011, 13(4): 29-34. |
7 | Zhang L L, Wang J X, Sun Q, et al. Removal of nitric oxide in rotating packed bed by ferrous chelate solution[J]. Chemical Engineering Journal, 2012, 181/182:624-629. |
8 | Joel A S, Wang M H, Ramshaw C. Modelling and simulation of intensified absorber for post-combustion CO2 capture using different mass transfer correlations[J]. Applied Thermal Engineering, 2015, 74: 47-53. |
9 | 魏兴跃, 吕行, 焦纬洲, 等. 超重力强化非均相催化臭氧矿化苯酚废水的响应面分析与优化[J]. 含能材料, 2020, 28(3): 268-276. |
Wei X Y, Lyu X, Jiao W Z, et al. Response surface analysis and optimization of high gravity-enhanced heterogeneous catalytic ozonation for mineralization of phenol wastewater[J]. Chinese Journal of Energetic Materials, 2020, 28(3): 268-276. | |
10 | Fan H L, Zhou S F, Jiao W Z, et al. Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method[J]. Carbohydrate Polymers, 2017, 174: 1192-1200. |
11 | Qi G S, Ren H Y, Fan H L, et al. Preparation of CoFe2O4 nanoparticles based on high-gravity technology and application for the removal of lead[J]. Chemical Engineering Research and Design, 2019, 147: 520-528. |
12 | He X L, Wang Z, Pu Y, et al. High-gravity-assisted scalable synthesis of zirconia nanodispersion for light emitting diodes encapsulation with enhanced light extraction efficiency[J]. Chemical Engineering Science, 2019, 195: 1-10. |
13 | Mondal A, Bhowal A, Datta S. Gas–liquid sensible heat transfer in spray and packed bed under a centrifugal field[J]. Industrial & Engineering Chemistry Research, 2013,52(1): 499-506. |
14 | 徐春艳, 刘承斌, 施力田, 等. 旋转床填料内径向温度分布实验分析[J]. 北京化工大学学报(自然科学版), 2005, 32(3): 23-26. |
Xu C Y, Liu C B, Shi L T, et al. Experimental analysis for the temperature distribution in the packing of RPB[J]. Journal of Beijing University of Chemical Technology, 2005, 32(3): 23-26. | |
15 | 徐春艳, 刘承斌, 施力田, 等. 旋转床填料内径向温度分布研究: 实验装置及流程[J]. 北京化工大学学报(自然科学版), 2005, 32(1): 97-99. |
Xu C Y, Liu C B, Shi L T, et al. Temperature distribution in the packing of RPB—experimental equipment and process[J]. Journal of Beijing University of Chemical Technology, 2005, 32(1): 97-99. | |
16 | 李艳, 刘有智, 李光明, 等. 逆流超重力传热的实验研究[J]. 化工进展,2006, 25:267-271. |
Li Y, Liu Y Z, Li G M, et al. Experimental study on the heat transfer in the high gravity rotary device of countercurrent flow[J]. Chemical Industry and Engineering Progress, 2006, 25:267-271. | |
17 | 李艳, 刘有智, 于娜娜, 等. 超重机中的气液直接传热性能[J]. 化工进展, 2011, 30(4): 729-733. |
Li Y, Liu Y Z, Yu N N, et al. Gas-liquid heat transfer characteristics of high gravity rotary device[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 729-733. | |
18 | 李艳. 超重力设备中热空气的直接水冷研究[J]. 广东化工, 2011, 38(6): 37-38, 281. |
Li Y. Study on heating the cold water with hot air in high gravity rotary device[J]. Guangdong Chemical Industry, 2011, 38(6): 37-38, 281. | |
19 | 李正林, 宋云华, 初广文, 等. 定-转子反应器传热特性[J]. 化工学报, 2009, 60(3): 560-566. |
Li Z L, Song Y H, Chu G W, et al. Heat transfer characteristics of rotor-stator reactor[J]. CIESC Journal, 2009, 60(3): 560-566. | |
20 | 邓先和, 张建军, 陈海辉. 旋转离心喷雾气液错流传热计算[J]. 高校化学工程学报, 1999, 13(1): 5-10 |
Deng X H, Zhang J J, Chen H H. Calculation of heat transfer between gas and liquid two phase cross flow with rotating spraying[J]. Journal of Chemical Engineering of Chinese Universities, 1999, 13(1): 5-10 | |
21 | 潘朝群, 邓先和, 张亚君. 多级雾化超重力旋转床中气液间的传热[J]. 化工学报, 2005, 56(3): 430-434. |
Pan Z Q, Deng X H, Zhang Y J. Heat transfer between liquid and gas in multistage-spraying rotating packed bed[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(3): 430-434. | |
22 | 陈海辉, 曾莹莹. 错流型多级雾化旋转填料床传热性能的试验研究[J]. 河南理工大学学报(自然科学版), 2014, 33(2): 182-186. |
Chen H H, Zeng Y Y. Experimental research on heat transfer of cross-low multi-atomization rotating packed bed[J]. Journal of Henan Polytechnic University (Natural Science), 2014, 33(2): 182-186. | |
23 | 郑奇, 郭改青, 祁贵生, 等. 不同填料结构旋转床气液换热性能对比[J]. 天然气化工(C1化学与化工), 2018, 43(2): 104-108. |
Zheng Q, Guo G Q, Qi G S, et al. Comparative study of heat transfer performance of different types of packing in rotating bed[J]. Natural Gas Chemical Industry, 2018, 43(2): 104-108. | |
24 | 董梅英. 错流与逆流旋转填料床传质性能对比研究[D]. 太原: 中北大学, 2016. |
Dong M Y. Comparative study on mass transfer performance of cross flow and counter flow of rotating packed bed[D]. Taiyuan: North University of China, 2016. | |
25 | 袁伟芳, 王震宇, 盛品正. 测定氨空比的改进及影响因素探讨[J]. 化工进展, 2004, 23(8): 899-900. |
Yuan W F, Wang Z Y, Sheng P Z. Improvement of determination about proportion of the ammonia and air[J]. Chemical Industry and Engineering Progress, 2004, 23(8): 899-900. | |
26 | 董梅英, 祁贵生, 刘有智, 等. 错流旋转填料床传质特性影响因素的实验研究[J]. 过程工程学报, 2015, 15(6): 929-934. |
Dong M Y, Qi G S, Liu Y Z, et al. Experimental study on influential factors of mass transfer in a cross-flow rotating packed bed[J]. The Chinese Journal of Process Engineering, 2015, 15(6): 929-934. | |
27 | Qi G S, Guo L Y, Liu Y Z, et al. Comparison of mass transfer characteristics between countercurrent-flow and crosscurrent-flow rotating packed bed[J]. China Petroleum Processing & Petrochemical Technology, 2019, 21(4):106-114. |
28 | Jiao W Z, Liu Y Z, Qi G S. A new impinging stream-rotating packed bed reactor for improvement of micromixing iodide and iodate[J]. Chemical Engineering Journal, 2010, 157(1): 168-173. |
29 | 王媛媛, 李素芳, 余刚, 等. 用折流式旋转填料床处理含氨废水[J]. 化工环保, 2007, 27(1): 50-54. |
Wang Y Y, Li S F, Yu G, et al. Treatment of ammonia-containing wastewater in baffled rotating packed bed[J]. Environmental Protection of Chemical Industry, 2007, 27(1): 50-54. | |
30 | 谷德银, 刘有智, 祁贵生, 等. 新型旋转填料床的气相传质特性[J]. 过程工程学报, 2015, 15(1): 35-39. |
Gu D Y, Liu Y Z, Qi G S, et al. Research on the mass transfer characteristics of gas phase in a novel rotating packed bed[J]. The Chinese Journal of Process Engineering, 2015, 15(1): 35-39. | |
31 | 陈敏恒, 从德滋, 方图南, 等.化工原理[M].北京:化学工业出版社, 1999: 244-248. |
Chen M H, Cong D Z, Fang T N, et al. Principles of Chemical Engineering[M]. Beijing: Chemical Industry Press, 1999: 244-248. | |
32 | Rajan S, Kumar M, Ansari M J, et al. Limiting gas liquid flows and mass transfer in a novel rotating packed bed (HiGee)[J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 986-997. |
33 | 张燕青, 潘朝群, 邓先和, 等. 多级雾化旋转填料床的传质性能[J]. 化工进展, 2010, 29(2): 228-232. |
Zhang Y Q, Pan Z Q, Deng X H, et al. Mass transfer characteristics of multistage spraying rotating packed bed[J]. Chemical Industry and Engineering Progress, 2010, 29(2): 228-232. |
[1] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[2] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[3] | 谷雨, 龚路远, 郭亚丽, 沈胜强. 低质量流率蒸汽真空水平管内凝结传热特性的实验研究[J]. 化工学报, 2022, 73(2): 595-603. |
[4] | 陆至彬, 李依梦, 何畅, 张冰剑, 陈清林, 潘明. 集成分区耦合策略的物理信息神经网络模拟共轭传热过程研究[J]. 化工学报, 2022, 73(12): 5483-5493. |
[5] | 柴叶霞, 陈华艳, 贾悦, 李丹丹, 武春瑞, 吕晓龙. PVDF中空纤维换热管超疏水表面强化蒸气滴状冷凝传热[J]. 化工学报, 2019, 70(4): 1331-1339. |
[6] | 刘忠彦, 孙大汉, 金旭, 王天皓, 马一太. CO2管内流动沸腾换热模型评价研究[J]. 化工学报, 2019, 70(1): 56-64. |
[7] | 李晗, 蒲文灏, 杨宁, 毛衍钦, 岳晨, 张琦. 空气-石蜡直接接触换热特性实验研究[J]. 化工学报, 2018, 69(9): 3792-3798. |
[8] | 姜林林, 柳建华, 张良, 赵越. 水平微细管内CO2流动沸腾换热特性[J]. 化工学报, 2018, 69(4): 1428-1436. |
[9] | 袁金斗, 王彦博, 胡涵, 余雄江, 徐进良. 微小通道内不同润湿性表面流动冷凝传热[J]. 化工学报, 2018, 69(10): 4156-4166. |
[10] | 张弘喆, 贾先剑, 郭航, 郭青, 闫小克, 叶芳, 马重芳. 冷却水参数对钠钾合金热管传热性能影响[J]. 化工学报, 2017, 68(S1): 105-110. |
[11] | 朴勇日, 吴晓敏, 马强, 李通. 填充泡沫铜圆管内R32单相流动换热[J]. 化工学报, 2017, 68(6): 2275-2279. |
[12] | 尹应德, 朱冬生, 孙晋飞, 李修真, 刘峰, 王洪. 螺旋扁管干式蒸发器的传热性能[J]. 化工学报, 2017, 68(4): 1318-1325. |
[13] | 葛铭, 赵利杰, 戴维葆, 蔡培, 舒少辛, 杨海瑞, 吕俊复. 叉排三维外肋管的传热特性[J]. 化工学报, 2017, 68(10): 3733-3738. |
[14] | 徐鹏飞, 翟晓强. 气候和围护结构对空气源热泵空调系统性能的影响[J]. 化工学报, 2016, 67(S2): 208-216. |
[15] | 冀文涛, 张定才, 赵创要, 何雅玲, 陶文铨. 高热通量水平管外池沸腾传热[J]. 化工学报, 2016, 67(S1): 28-32. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 352
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||