化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5686-5695.DOI: 10.11949/0438-1157.20210787
收稿日期:
2021-06-10
修回日期:
2021-08-02
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
孙琳
作者简介:
陈春波(1994—),男,博士研究生,基金资助:
Chunbo CHEN(),Xionglin LUO,Lin SUN()
Received:
2021-06-10
Revised:
2021-08-02
Online:
2021-11-05
Published:
2021-11-12
Contact:
Lin SUN
摘要:
能耗过高制约了多效蒸发(MED)海水淡化技术的大规模应用,稳态操作优化虽然能够有效减少MED系统的短期蒸汽消耗速率,但污垢累积导致该系统在长周期运行时蒸汽消耗量升高和装置减产。为此,首先针对带蒸汽压缩机(TVC)的MED系统(MED-TVC)提出可行域的概念,分析表明操作点在可行域中的位置决定了系统的运行效益。随后通过可行域的时变分析发现操作点超出可行域是稳态优化中系统性能逐渐衰减的原因。最后利用可行域的性质,提出了时变约束的全周期操作优化方法。该方法通过调整MED-TVC系统在运行周期内的操作条件,获得全周期最低的蒸汽消耗量,同时利用时变的可行域约束保证优化结果在全周期内均满足淡水产量要求。结果表明,时变约束的全周期操作优化在维持MED-TVC系统的设计淡水产量的同时,全周期蒸汽消耗量相比于设计值减少了19.6%,能够很好地解决MED-TVC系统的操作优化问题。
中图分类号:
陈春波, 罗雄麟, 孙琳. 多效蒸发海水淡化系统可行域时变分析与全周期操作优化[J]. 化工学报, 2021, 72(11): 5686-5695.
Chunbo CHEN, Xionglin LUO, Lin SUN. Time-varying analysis of feasible region and full-cycle operating optimization in multi-effect distillation seawater desalination system[J]. CIESC Journal, 2021, 72(11): 5686-5695.
固定条件 | 值 | 设计参数 | 值 |
---|---|---|---|
海水流动方式 | 平行-交叉 | 每效进料流量/(kg?s-1) | 31.59 |
海水温度/℃ | 30 | 效间温差/℃ | 3 |
海水含盐量/(g?kg-1) | 30 | 预热器温升/℃ | 4 |
冷凝器出口温度/℃ | 35 | TVC引射流量/(kg?s-1) | 4.50 |
驱动蒸汽压力/kPa | 500 | 加热蒸汽流量/(kg?s-1) | 7.38 |
驱动蒸汽温度/℃ | 151.8 | 淡水产量/(kg?s-1) | 75.81 |
造水比 | 10.27 |
表1 八效MED-TVC系统设计运行参数[25]
Table 1 Specifications of the MED-TVC system[25]
固定条件 | 值 | 设计参数 | 值 |
---|---|---|---|
海水流动方式 | 平行-交叉 | 每效进料流量/(kg?s-1) | 31.59 |
海水温度/℃ | 30 | 效间温差/℃ | 3 |
海水含盐量/(g?kg-1) | 30 | 预热器温升/℃ | 4 |
冷凝器出口温度/℃ | 35 | TVC引射流量/(kg?s-1) | 4.50 |
驱动蒸汽压力/kPa | 500 | 加热蒸汽流量/(kg?s-1) | 7.38 |
驱动蒸汽温度/℃ | 151.8 | 淡水产量/(kg?s-1) | 75.81 |
造水比 | 10.27 |
效数 | Ff/(kg?s-1) | P/kPa | ΔTp/℃ | Fent/kg?s-1 | Fmot/(kg?s-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
设计值 | 优化值 | 设计值 | 优化值 | 设计值 | 优化值 | 设计值 | 优化值 | 设计值 | 优化值 | |
1 | 31.59 | 19.84 | 27.34 | 26.33 | 4 | 2.78 | 4.43 | 4.06 | 7.38 | 6.45 |
2 | 31.59 | 18.48 | 23.92 | 23.39 | 4 | 2.83 | ||||
3 | 31.59 | 18.77 | 20.86 | 20.69 | 4 | 2.87 | ||||
4 | 31.59 | 19.66 | 18.15 | 18.22 | 4 | 3.06 | ||||
5 | 31.59 | 21.97 | 15.74 | 15.97 | 4 | 3.80 | ||||
6 | 31.59 | 23.34 | 13.61 | 13.83 | 4 | 5.45 | ||||
7 | 31.59 | 18.06 | 11.73 | 11.84 | 4 | 8.03 | ||||
8 | 31.59 | 19.58 | 10.07 | 10.12 | — | — |
表2 MED-TVC系统的操作条件稳态优化结果与设计值对比
Table 2 Comparison of operating conditions between steady-state optimization and design
效数 | Ff/(kg?s-1) | P/kPa | ΔTp/℃ | Fent/kg?s-1 | Fmot/(kg?s-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
设计值 | 优化值 | 设计值 | 优化值 | 设计值 | 优化值 | 设计值 | 优化值 | 设计值 | 优化值 | |
1 | 31.59 | 19.84 | 27.34 | 26.33 | 4 | 2.78 | 4.43 | 4.06 | 7.38 | 6.45 |
2 | 31.59 | 18.48 | 23.92 | 23.39 | 4 | 2.83 | ||||
3 | 31.59 | 18.77 | 20.86 | 20.69 | 4 | 2.87 | ||||
4 | 31.59 | 19.66 | 18.15 | 18.22 | 4 | 3.06 | ||||
5 | 31.59 | 21.97 | 15.74 | 15.97 | 4 | 3.80 | ||||
6 | 31.59 | 23.34 | 13.61 | 13.83 | 4 | 5.45 | ||||
7 | 31.59 | 18.06 | 11.73 | 11.84 | 4 | 8.03 | ||||
8 | 31.59 | 19.58 | 10.07 | 10.12 | — | — |
图4 稳态优化和设计条件下的单效可行域全周期变化
Fig.4 Variations of single-effect feasible region in the full cycle under the steady-state optimization and design conditions
参数 | 设计条件 | 稳态优化 | 全周期优化 |
---|---|---|---|
淡水产量/(kg?s-1) | 75.81 | [75.81, 66.76] | 75.81 |
驱动蒸汽流量/(kg?s-1) | [7.38, 10.71] | [6.45, 20.00] | [6.59, 6.91] |
GOR | [10.30, 7.08] | [11.75, 3.34] | [11.51, 10.98] |
总蒸汽量/108 kg | 5.30 | 10.40 | 4.26 |
表3 设计条件、稳态优化和全周期优化运行结果对比
Table 3 Comparison of design condition, steady-state optimization and full cycle optimization for full cycle operating results
参数 | 设计条件 | 稳态优化 | 全周期优化 |
---|---|---|---|
淡水产量/(kg?s-1) | 75.81 | [75.81, 66.76] | 75.81 |
驱动蒸汽流量/(kg?s-1) | [7.38, 10.71] | [6.45, 20.00] | [6.59, 6.91] |
GOR | [10.30, 7.08] | [11.75, 3.34] | [11.51, 10.98] |
总蒸汽量/108 kg | 5.30 | 10.40 | 4.26 |
1 | 郭妮娜. 浅析我国水资源现状、问题及治理对策[J]. 安徽农学通报, 2018, 24(10): 79-81. |
Guo N N. The current situation, problems and countermeasures of water resources in China[J]. Anhui Agricultural Science Bulletin, 2018, 24(10): 79-81. | |
2 | 闫佳伟, 王红瑞, 朱中凡, 等. 我国海水淡化若干问题及对策[J]. 南水北调与水利科技, 2020, 18(2): 199-210. |
Yan J W, Wang H R, Zhu Z F, et al. Relevant issues and countermeasures of seawater desalination in China[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(2): 199-210. | |
3 | 2018—2019中国海水淡化年度报告[R]. 北京: 中国水利企业协会脱盐分会, 2020. |
China Desalination Yearbook of 2018—2019[R]. Beijing: Desalination Branch of China Water enterprise Confederation, 2020. | |
4 | 阮国岭. 用海水淡化保障高质量发展[J]. 民主与科学, 2020(1): 35-37. |
Ruan G L. Seawater desalination guarantees high quality development[J]. Democracy & Science, 2020(1): 35-37. | |
5 | Ophir A, Lokiec F. Advanced MED process for most economical sea water desalination[J]. Desalination, 2005, 182(1/2/3): 187-198. |
6 | Mazini M T, Yazdizadeh A, Ramezani M H. Dynamic modeling of multi-effect desalination with thermal vapor compressor plant[J]. Desalination, 2014, 353: 98-108. |
7 | 王锐浩, 黄鹏飞, 王小军, 等. 海水淡化成本构成与成本控制问题研究[J]. 盐科学与化工, 2020, 49(7): 19-23. |
Wang R H, Huang P F, Wang X J, et al. Study on cost composition and cost control of desalination[J]. Journal of Salt Science and Chemical Industry, 2020, 49(7): 19-23. | |
8 | Jamil M A, Zubair S M. Effect of feed flow arrangement and number of evaporators on the performance of multi-effect mechanical vapor compression desalination systems[J]. Desalination, 2018, 429: 76-87. |
9 | Khalid K A, Antar M A, Khalifa A, et al. Allocation of thermal vapor compressor in multi effect desalination systems with different feed configurations[J]. Desalination, 2018, 426: 164-173. |
10 | Carballo J A, Bonilla J, Roca L, et al. Optimal operating conditions analysis for a multi-effect distillation plant according to energetic and exergetic criteria[J]. Desalination, 2018, 435: 70-76. |
11 | Janghorban Esfahani I, Ataei A, Shetty K V, et al. Modeling and genetic algorithm-based multi-objective optimization of the MED-TVC desalination system[J]. Desalination, 2012, 292: 87-104. |
12 | Gholinejad M, Bakhtiari A, Bidi M. Effects of tracking modes on the performance of a solar MED plant[J]. Desalination, 2016, 380: 29-42. |
13 | Tian L, Tang Y P, Wang Y Q. Economic evaluation of seawater desalination for a nuclear heating reactor with multi-effect distillation[J]. Desalination, 2005, 180(1/2/3): 53-61. |
14 | Curto D, Franzitta V, Guercio A. A review of the water desalination technologies[J]. Applied Sciences, 2021, 11(2): 670. |
15 | Christ A, Rahimi B, Regenauer-Lieb K, et al. Techno-economic analysis of geothermal desalination using Hot Sedimentary Aquifers: a pre-feasibility study for Western Australia[J]. Desalination, 2017, 404: 167-181. |
16 | Ng K C, Thu K, Oh S J, et al. Recent developments in thermally-driven seawater desalination: energy efficiency improvement by hybridization of the MED and AD cycles[J]. Desalination, 2015, 356: 255-270. |
17 | Khoshgoftar Manesh M H, Ghalami H, Amidpour M, et al. Optimal coupling of site utility steam network with MED-RO desalination through total site analysis and exergoeconomic optimization[J]. Desalination, 2013, 316: 42-52. |
18 | Mabrouk A N, Fath H E S. Technoeconomic study of a novel integrated thermal MSF-MED desalination technology[J]. Desalination, 2015, 371: 115-125. |
19 | Al-Jaroudi S S, Ul-Hamid A, Al-Matar J A. Prevention of failure in a distillation unit exhibiting extensive scale formation[J]. Desalination, 2010, 260(1/2/3): 119-128. |
20 | Budhiraja P, Fares A A. Studies of scale formation and optimization of antiscalant dosing in multi-effect thermal desalination units[J]. Desalination, 2008, 220(1/2/3): 313-325. |
21 | 孙雪, 吴礼云, 李强, 等. 海水淡化产量降低原因分析及提产实践[J]. 水处理技术, 2018, 44(5): 123-126. |
Sun X, Wu L Y, Li Q, et al. Reasons analysis of seawater desalination production reduction and practice of increasing production[J]. Technology of Water Treatment, 2018, 44(5): 123-126. | |
22 | Albagawi J. Fouling analysis and its mitigation in heat exchangers[D]. King Fahd University of Petroleum and Minerals (Saudi Arabia), 2002. |
23 | Tahir F, Atif M, Antar M A. The effect of fouling on performance and design aspects of multiple-effect desalination systems[M]//Recent Progress in Desalination, Environmental and Marine Outfall Systems. Cham: Springer International Publishing, 2015: 35-52. |
24 | Chen C B, Sun L, Liu D J, et al. Impact of cumulative fouling characteristics on full-cycle operation optimisation of multi-effect distillation desalination system[J].Chem. Eng. Trans.,2019, 76: 649-654. |
25 | Chen C B, Luo X L, Wang T Y, et al. Minimum motive steam consumption on full cycle optimization with cumulative fouling consideration for MED-TVC desalination system[J]. Desalination, 2021, 507: 115017. |
26 | Cipollina A, Agnello M, Piacentino A, et al. A dynamic model for MED-TVC transient operation[J]. Desalination, 2017, 413: 234-257. |
27 | Druetta P, Aguirre P, Mussati S. Optimization of multi-effect evaporation desalination plants[J]. Desalination, 2013, 311: 1-15. |
28 | 徐志明, 张仲彬, 郭闻州, 等. 微粒和析晶混合污垢模型[J]. 工程热物理学报, 2006, 27(S2): 81-84. |
Xu Z M, Zhang Z B, Guo W Z, et al. A theoretical model of composite fouling of particulate and crystallization[J]. Journal of Engineering Thermophysics, 2006, 27(S2): 81-84. | |
29 | 张海春, 王海增, 阮国岭. 热法海水淡化阻垢及清洗技术研究现状[J]. 中国给水排水, 2008, 24(16): 12-16. |
Zhang H C, Wang H Z, Ruan G L. Research status of scale prevention and cleaning techniques in thermal seawater desalination[J]. China Water & Wastewater, 2008, 24(16): 12-16. | |
30 | Shahzad M W, Burhan M, Ang L, et al. Energy-water-environment nexus underpinning future desalination sustainability[J]. Desalination, 2017, 413: 52-64. |
31 | 阮国岭. 海水淡化工程设计[M]. 北京: 中国电力出版社, 2013. |
Ruan G L. Design of Seawater Desalination Engineering [M]. Beijing: China Electric Power Press, 2013. | |
32 | Xu L, Wang S Y, Wang S C, et al. Studies on heat-transfer film coefficients inside a horizontal tube in falling film evaporators[J]. Desalination, 2004, 166: 215-222. |
[1] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[2] | 张建飞, 林嘉奖, 罗雄麟, 许锋. 重油催化裂化装置产品分布调控与优化模拟分析[J]. 化工学报, 2022, 73(3): 1232-1245. |
[3] | 王天媛, 陈春波, 孙琳, 罗雄麟. 基于全周期缓慢结垢的多效蒸发海水淡化慢时变系统优化设计[J]. 化工学报, 2022, 73(2): 759-769. |
[4] | 王德宏, 孙琳, 罗雄麟. 海水淡化系统多效蒸发传热温差全周期渐变优化分析[J]. 化工学报, 2022, 73(12): 5469-5482. |
[5] | 徐健玮, 梁颖宗, 罗向龙, 陈健勇, 杨智, 陈颖. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444. |
[6] | 谢府命, 许锋, 罗雄麟. 工艺调度对乙炔加氢反应器优化运行策略的影响分析[J]. 化工学报, 2021, 72(5): 2718-2726. |
[7] | 贾小平, 石磊, 杨友麒. 工业园区生态化发展的挑战与过程系统工程的机遇[J]. 化工学报, 2021, 72(5): 2373-2391. |
[8] | 李子祎,潘恩泽,王佳轩,鲁金明,杨建华. ZSM-5沸石分子筛膜的制备及脱盐性能研究[J]. 化工学报, 2021, 72(10): 5247-5256. |
[9] | 谭明, 王文广, 张晓东, 赵洪武, 张杨, 杨兴涛. 正渗透策略和化学清洗海水淡化反渗透膜[J]. 化工学报, 2020, 71(S2): 306-313. |
[10] | 王文广, 谭明, 孙小寒, 杨兴涛, 张晓东, 张杨, 赵洪武. 基于海水淡化中试的超滤膜清洗工艺及机理[J]. 化工学报, 2020, 71(S2): 289-296. |
[11] | 冯思琦, 罗雄麟. 模式切换类经济预测控制切换时间在线估计[J]. 化工学报, 2020, 71(S2): 225-240. |
[12] | 谢府命, 许锋, 罗雄麟. 慢时变化工过程裕量释放机制分析[J]. 化工学报, 2020, 71(S2): 216-224. |
[13] | 张佳, 罗雄麟, 许锋, 许鋆. 前馈变量对预测控制可行域的影响分析[J]. 化工学报, 2016, 67(9): 3776-3783. |
[14] | 张锁江, 张香平, 聂毅, 鲍迪, 董海峰, 吕兴梅. 绿色过程系统工程[J]. 化工学报, 2016, 67(1): 41-53. |
[15] | 徐啸, 朱晓兵, 周集体, 李任征. 采用垂直电场电泳分离脱盐技术模拟海水淡化的探索[J]. 化工学报, 2015, 66(S2): 332-341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||