化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1232-1245.DOI: 10.11949/0438-1157.20211245
收稿日期:
2021-08-26
修回日期:
2021-09-30
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
许锋
作者简介:
张建飞(1990—),男,博士研究生,基金资助:
Jianfei ZHANG(),Jiajiang LIN,Xionglin LUO,Feng XU()
Received:
2021-08-26
Revised:
2021-09-30
Online:
2022-03-15
Published:
2022-03-14
Contact:
Feng XU
摘要:
重油催化裂化焦炭产率较高,会加重再生器负荷,降低剂油比和轻质油收率。对此,在催化裂化装置基础上添加外取热器。通过采用外取热和外甩油浆相结合的方法,实现重油催化裂化轻质油收率的提高。外取热器的作用是为了快速有效将再生器部分过多的热量取走,达到再生催化剂降温的目的。外甩油浆的作用是为了降低焦炭产率,减少烧焦产生热量。热量的降低可以有效提高剂油比,增加轻质油收率。原料残炭值的大小对产品分布有直接影响。原料残炭值越大,催化裂化装置的反应器部分产生焦炭越多,待生催化剂上含碳量也会升高,到达再生器烧焦以后释放大量的热量,热量增加不仅会影响再生器的寿命,也会使催化裂化装置中的剂油比降低,从而降低轻质油收率。通过控制向量参数化方法对CO助燃剂、主风、外取热和外甩油浆进行了不同层次的调控与优化,结果发现,对于重油催化裂化,CO助燃剂、主风的优化影响效果有限,而外取热和外甩油浆相互促进可以有效提高剂油比和轻质油收率。
中图分类号:
张建飞, 林嘉奖, 罗雄麟, 许锋. 重油催化裂化装置产品分布调控与优化模拟分析[J]. 化工学报, 2022, 73(3): 1232-1245.
Jianfei ZHANG, Jiajiang LIN, Xionglin LUO, Feng XU. Modeling analysis for product distribution control and optimization of heavy oil FCCU[J]. CIESC Journal, 2022, 73(3): 1232-1245.
变量 | 数值 |
---|---|
Ffresh | 85 t/h |
Fhco | 12.75 t/h |
Fslurry | 7.25 t/h |
GCrg2 | 504.2 kg/s |
COR | 4.81 |
Vair,rg1 | 49340 m3/h |
Vair,rg2 | 6658 m3/h |
Mpro | 4 kg |
xpro | 0.004%(mass) |
W | 24/5/5 kg |
Triser | 493.5℃ |
Trg1 | 695.4℃ |
Trg2 | 703.6℃ |
CSC | 0.95 kg/kg |
Crg2 | 0.04 kg/kg |
表1 FCCU基本运行条件
Table 1 Operating conditions of FCCU
变量 | 数值 |
---|---|
Ffresh | 85 t/h |
Fhco | 12.75 t/h |
Fslurry | 7.25 t/h |
GCrg2 | 504.2 kg/s |
COR | 4.81 |
Vair,rg1 | 49340 m3/h |
Vair,rg2 | 6658 m3/h |
Mpro | 4 kg |
xpro | 0.004%(mass) |
W | 24/5/5 kg |
Triser | 493.5℃ |
Trg1 | 695.4℃ |
Trg2 | 703.6℃ |
CSC | 0.95 kg/kg |
Crg2 | 0.04 kg/kg |
序号 | 外甩油浆量/(t/h) | 取热比例/% | 柴油/% | 汽油/% | 焦炭/% | 气体/% | 烧焦罐底部温度/℃ | 密相床温度/℃ |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 30.92 | 43.65 | 10.37 | 15.06 | 709.4 | 737.4 |
2 | 1.81 | 0 | 30.10 | 42.04 | 9.82 | 14.55 | 700.9 | 728.6 |
3 | 3.63 | 0 | 30.05 | 40.41 | 8.65 | 13.72 | 689.8 | 717.2 |
4 | 5.44 | 0 | 29.99 | 39.84 | 7.85 | 11.71 | 676.8 | 704.6 |
5 | 7.25 | 0 | 30.01 | 39.51 | 6.15 | 10.17 | 666.2 | 691.9 |
6 | 0 | 10 | 30.97 | 44.64 | 10.27 | 14.12 | 707.5 | 730.4 |
7 | 1.81 | 10 | 30.04 | 43.24 | 9.83 | 13.36 | 699.5 | 726.2 |
8 | 3.63 | 10 | 30.06 | 42.09 | 9.21 | 11.56 | 688.3 | 721.7 |
9 | 5.44 | 10 | 30.30 | 40.09 | 8.61 | 10.39 | 675.6 | 700.6 |
10 | 7.25 | 10 | 30.11 | 39.84 | 7.04 | 9.86 | 664.7 | 688.6 |
11 | 0 | 20 | 31.51 | 45.20 | 10.03 | 13.25 | 705.5 | 723.5 |
12 | 1.81 | 20 | 31.19 | 43.12 | 9.63 | 12.53 | 698.1 | 715.8 |
13 | 3.63 | 20 | 30.83 | 41.39 | 8.73 | 11.97 | 687.7 | 714.1 |
14 | 5.44 | 20 | 30.43 | 40.63 | 7.81 | 10.52 | 674.2 | 699.3 |
15 | 7.25 | 20 | 30.17 | 40.21 | 6.01 | 10.45 | 662.1 | 686.2 |
16 | 0 | 30 | 31.68 | 46.18 | 10.96 | 12.19 | 703.5 | 717.4 |
17 | 1.81 | 30 | 31.22 | 44.15 | 10.73 | 10.16 | 696.8 | 715.5 |
18 | 3.63 | 30 | 31.08 | 42.09 | 10.45 | 9.30 | 685.0 | 713.5 |
19 | 5.44 | 30 | 30.70 | 41.14 | 8.44 | 9.12 | 672.6 | 696.7 |
20 | 7.25 | 30 | 30.42 | 40.41 | 6.30 | 8.72 | 661.3 | 684.1 |
表2 重质油催化裂化的产品分布
Table 2 Product distribution of heavy oil catalytic cracking
序号 | 外甩油浆量/(t/h) | 取热比例/% | 柴油/% | 汽油/% | 焦炭/% | 气体/% | 烧焦罐底部温度/℃ | 密相床温度/℃ |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 30.92 | 43.65 | 10.37 | 15.06 | 709.4 | 737.4 |
2 | 1.81 | 0 | 30.10 | 42.04 | 9.82 | 14.55 | 700.9 | 728.6 |
3 | 3.63 | 0 | 30.05 | 40.41 | 8.65 | 13.72 | 689.8 | 717.2 |
4 | 5.44 | 0 | 29.99 | 39.84 | 7.85 | 11.71 | 676.8 | 704.6 |
5 | 7.25 | 0 | 30.01 | 39.51 | 6.15 | 10.17 | 666.2 | 691.9 |
6 | 0 | 10 | 30.97 | 44.64 | 10.27 | 14.12 | 707.5 | 730.4 |
7 | 1.81 | 10 | 30.04 | 43.24 | 9.83 | 13.36 | 699.5 | 726.2 |
8 | 3.63 | 10 | 30.06 | 42.09 | 9.21 | 11.56 | 688.3 | 721.7 |
9 | 5.44 | 10 | 30.30 | 40.09 | 8.61 | 10.39 | 675.6 | 700.6 |
10 | 7.25 | 10 | 30.11 | 39.84 | 7.04 | 9.86 | 664.7 | 688.6 |
11 | 0 | 20 | 31.51 | 45.20 | 10.03 | 13.25 | 705.5 | 723.5 |
12 | 1.81 | 20 | 31.19 | 43.12 | 9.63 | 12.53 | 698.1 | 715.8 |
13 | 3.63 | 20 | 30.83 | 41.39 | 8.73 | 11.97 | 687.7 | 714.1 |
14 | 5.44 | 20 | 30.43 | 40.63 | 7.81 | 10.52 | 674.2 | 699.3 |
15 | 7.25 | 20 | 30.17 | 40.21 | 6.01 | 10.45 | 662.1 | 686.2 |
16 | 0 | 30 | 31.68 | 46.18 | 10.96 | 12.19 | 703.5 | 717.4 |
17 | 1.81 | 30 | 31.22 | 44.15 | 10.73 | 10.16 | 696.8 | 715.5 |
18 | 3.63 | 30 | 31.08 | 42.09 | 10.45 | 9.30 | 685.0 | 713.5 |
19 | 5.44 | 30 | 30.70 | 41.14 | 8.44 | 9.12 | 672.6 | 696.7 |
20 | 7.25 | 30 | 30.42 | 40.41 | 6.30 | 8.72 | 661.3 | 684.1 |
(a) 优化前后参数对比 | ||
---|---|---|
参数 | 优化前 | 优化后 |
Mpro/kg | 5 | 5.17 |
Vair,rg1/(m3/h) | 49340 | 49011 |
COR | 4.12 | 4.23 |
η0/% | 20 | 21.55 |
y/(kg/kg) | 72.22 | 72.43 |
yn/(kg/kg) | 41.39 | 41.52 |
yd/(kg/kg) | 30.83 | 30.91 |
表3 CO助燃剂、主风和外取热优化前后参数对比和经济效益变化
Table 3 Comparison of parameters before and after optimization of CO combustion aid, main air and extraction heat and changes in economic benefits
(a) 优化前后参数对比 | ||
---|---|---|
参数 | 优化前 | 优化后 |
Mpro/kg | 5 | 5.17 |
Vair,rg1/(m3/h) | 49340 | 49011 |
COR | 4.12 | 4.23 |
η0/% | 20 | 21.55 |
y/(kg/kg) | 72.22 | 72.43 |
yn/(kg/kg) | 41.39 | 41.52 |
yd/(kg/kg) | 30.83 | 30.91 |
(a) 优化前后参数对比 | ||
---|---|---|
参数 | 优化前 | 优化后 |
Mpro/kg | 5 | 4.32 |
Vair,rg1/(m3/h) | 49340 | 48694 |
COR | 4.12 | 4.14 |
Fdrawoff/(kg/kg) | 3.63 | 3.49 |
y/(kg/kg) | 72.22 | 72.38 |
yn/(kg/kg) | 41.39 | 41.50 |
yd/(kg/kg) | 30.83 | 30.89 |
表4 CO助燃剂、主风和外甩油浆优化前后参数对比和经济效益变化
Table 4 Comparison of parameters before and after optimization of CO combustion aid, main air and slurry drawoff and changes in economic benefits
(a) 优化前后参数对比 | ||
---|---|---|
参数 | 优化前 | 优化后 |
Mpro/kg | 5 | 4.32 |
Vair,rg1/(m3/h) | 49340 | 48694 |
COR | 4.12 | 4.14 |
Fdrawoff/(kg/kg) | 3.63 | 3.49 |
y/(kg/kg) | 72.22 | 72.38 |
yn/(kg/kg) | 41.39 | 41.50 |
yd/(kg/kg) | 30.83 | 30.89 |
图11 优化CO助燃剂、主风、外取热和外甩油浆对重质油催化裂化的敏感性分析
Fig.11 Sensitivity analysis of optimized CO combustion promoter, main air, extraction heat and slurry drawoff to FCC of heavy oil
(a) 优化前后参数对比 | ||
---|---|---|
参数 | 优化前 | 优化后 |
Mpro/kg | 5 | 4.68 |
Vair,rg1/(m3/h) | 49340 | 48741 |
COR | 4.12 | 4.35 |
η0/% | 20 | 20.87 |
Fdrawoff/(kg/kg) | 3.63 | 3.58 |
y/(kg/kg) | 72.22 | 72.94 |
yn/(kg/kg) | 41.39 | 41.77 |
yd/(kg/kg) | 30.83 | 31.17 |
表5 CO助燃剂、主风、外取热和外甩油浆优化前后参数对比和经济效益变化
Table 5 Comparison of parameters before and after optimization of CO combustion promoter, main air, extraction heat and slurry drawoff and changes in economic benefits
(a) 优化前后参数对比 | ||
---|---|---|
参数 | 优化前 | 优化后 |
Mpro/kg | 5 | 4.68 |
Vair,rg1/(m3/h) | 49340 | 48741 |
COR | 4.12 | 4.35 |
η0/% | 20 | 20.87 |
Fdrawoff/(kg/kg) | 3.63 | 3.58 |
y/(kg/kg) | 72.22 | 72.94 |
yn/(kg/kg) | 41.39 | 41.77 |
yd/(kg/kg) | 30.83 | 31.17 |
操作模式 | 轻质油收率/ %(mass) | 汽油/ %(mass) | 柴油/ %(mass) | 气体/ %(mass) | 油浆/ %(mass) | 水蒸气/t | 年增收益/元 |
---|---|---|---|---|---|---|---|
优化CO助燃剂、主风和外取热 | 72.43 | 41.52 | 30.91 | 15.752 | 0 | 79.91 | 2.54×106 |
优化CO助燃剂、主风和外甩油浆 | 72.38 | 41.50 | 30.88 | 13.046 | 5.56 | 0 | 1.39×106 |
优化CO助燃剂、主风、外取热和外甩油浆 | 72.94 | 41.77 | 31.17 | 11.843 | 5.73 | 79.38 | 2.65×106 |
表6 不同操作经济效益对比
Table 6 Comparison of economic benefits of different operations
操作模式 | 轻质油收率/ %(mass) | 汽油/ %(mass) | 柴油/ %(mass) | 气体/ %(mass) | 油浆/ %(mass) | 水蒸气/t | 年增收益/元 |
---|---|---|---|---|---|---|---|
优化CO助燃剂、主风和外取热 | 72.43 | 41.52 | 30.91 | 15.752 | 0 | 79.91 | 2.54×106 |
优化CO助燃剂、主风和外甩油浆 | 72.38 | 41.50 | 30.88 | 13.046 | 5.56 | 0 | 1.39×106 |
优化CO助燃剂、主风、外取热和外甩油浆 | 72.94 | 41.77 | 31.17 | 11.843 | 5.73 | 79.38 | 2.65×106 |
图12 优化CO助燃剂、主风、外取热和外甩油浆对重质油残炭不同时的敏感性分析
Fig.12 Sensitivity analysis of optimized CO combustion promoter, main air, extraction heat and slurry drawoff to different carbon residue of heavy oil
1 | 王锐, 罗雄麟, 许锋. CO燃烧状况可调的催化裂化装置多稳态分析[J]. 化工学报, 2013, 64(8): 2930-2937. |
Wang R, Luo X L, Xu F. Multiple steady states of FCCU with varying CO concentration[J]. CIESC Journal, 2013, 64(8): 2930-2937. | |
2 | 许锋, 罗雄麟. 催化裂化装置再生器主风裕量的动态分析[J]. 化工学报, 2008, 59(1): 126-134. |
Xu F, Luo X L. Analysis of air flow rate margin in FCCU regenerator based on dynamic model[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(1): 126-134. | |
3 | Pinheiro C I C, Fernandes J L, Domingues L, et al. Fluid catalytic cracking (FCC) process modeling, simulation, and control[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 1-29. |
4 | Hernández-Barajas J R, Vázquez-Román R, Salazar-Sotelo D. Multiplicity of steady states in FCC units: effect of operating conditions[J]. Fuel, 2006, 85(5/6): 849-859. |
5 | Arbel A, Huang Z P, Rinard I H, et al. Dynamic and control of fluidized catalytic crackers 1: Modeling of the current generation of FCC's[J]. Industrial & Engineering Chemistry Research, 1995, 34(4): 1228-1243. |
6 | Lee W, Kugelman A M. Number of steady-state operating points and local stability of open-loop fluid catalytic cracker[J]. Industrial & Engineering Chemistry Process Design and Development, 1973, 12(2): 197-204. |
7 | 杨开岩. 重油催化裂化装置外取热器应用[J]. 石油炼制与化工, 2005, 36(1): 44-47. |
Yang K Y. Application of external catalyst cooler in RFCC unit[J]. Petroleum Processing and Petrochemicals, 2005, 36(1): 44-47. | |
8 | 石宝珍. 催化裂化再生器外取热器换热过程理论分析[J]. 炼油设计, 2000, 30(3): 37-41. |
Shi B Z. Theoretical analysis of heat exchange in external catalyst coolers of FCCU[J]. Petroleum Refinery Engineering, 2000, 30(3): 37-41. | |
9 | Fernandes J L, Pinheiro C I C, Oliveira N M C, et al. Steady state multiplicity in an UOP FCC unit with high-efficiency regenerator[J]. Chemical Engineering Science, 2007, 62(22): 6308-6322. |
10 | Stratiev D, Shishkova I, Ivanov M, et al. Role of catalyst in optimizing fluid catalytic cracking performance during cracking of H-oil-derived gas oils[J]. ACS Omega, 2021, 6(11): 7626-7637. |
11 | Lu G J, Lu X Y, Liu P. Reactivation of spent FCC catalyst by mixed acid leaching for efficient catalytic cracking[J]. Journal of Industrial and Engineering Chemistry, 2020, 92: 236-242. |
12 | Miao P P, Miao J, Guo Y L, et al. Efficient conversion of light cycle oil into gasoline with a combined hydrogenation and catalytic cracking process: effect of pre-distillation[J]. Energy & Fuels, 2020, 34(10): 12505-12516. |
13 | 孙富伟. 催化裂化外取热器开发与研究进展[J]. 现代化工, 2015, 35(6): 29-33. |
Sun F W. Advances in research and development of external catalyst cooler of FCC[J]. Modern Chemical Industry, 2015, 35(6): 29-33. | |
14 | Arandes J M, de Lasa H I. Simulation and multiplicity of steady states in fluidized FCCUs[J]. Chemical Engineering Science, 1992, 47(9/10/11): 2535-2540. |
15 | 王锐, 罗雄麟, 许锋. 高效再生催化裂化装置多稳态分析: 反应温度开/闭环控制条件对热反馈机制的影响[J]. 化工学报, 2014, 65(9): 3519-3526. |
Wang R, Luo X L, Xu F. Multiple steady states of fluid catalytic cracking unit with high-efficiency regenerator: effect of reaction temperature control strategy on heat feedback[J]. CIESC Journal, 2014, 65(9): 3519-3526. | |
16 | Johnson T E. Improve regenerator heat removal [J]. Hydrocarbon Processing, 2011, 70(11): 55-57. |
17 | 许锋, 蒋慧蓉, 王锐, 等. 催化裂化装置裕量评价与瓶颈分析[J]. 化工学报, 2013, 64(6): 2131-2144. |
Xu F, Jiang H R, Wang R, et al. Margin evaluation and bottleneck analysis for FCCU[J]. CIESC Journal, 2013, 64(6): 2131-2144. | |
18 | Palos R, Gutirrez A, Fernndez M L, et al. Upgrading of heavy coker naphtha by means of catalytic cracking in refinery FCC unit[J]. Fuel Processing Technology, 2020, 205: 106454. |
19 | 曾思纳. 催化裂化装置外取热器结构设计综述[J]. 广东化工, 2020, 47(17): 267-268, 273. |
Zeng S N. Review on structure design of external heat exchanger in FCC unit[J]. Guangdong Chemical Industry, 2020, 47(17): 267-268, 273. | |
20 | Mathew B, Hegab H. Experimental investigation of thermal model of parallel flow microchannel heat exchangers subjected to external heat flux[J]. International Journal of Heat and Mass Transfer, 2012, 55(7/8): 2193-2199. |
21 | Sakizlis V, Perkins J D, Pistikopoulos E N. Parametric controllers in simultaneous process and control design optimization[J]. Industrial & Engineering Chemistry Research, 2003, 42(20): 4545-4563. |
22 | Edwards W M, Kim H N. Multiple steady states in FCC unit operations[J]. Chemical Engineering Science, 1988, 43(8): 1825-1830. |
23 | Nie Y S, Biegler L T, Wassick J M. Integrated scheduling and dynamic optimization of batch processes using state equipment networks[J]. AIChE Journal, 2012, 58(11): 3416-3432. |
24 | Ricardez-Sandoval L A, Douglas P L, Budman H M. A methodology for the simultaneous design and control of large-scale systems under process parameter uncertainty[J]. Computers & Chemical Engineering, 2011, 35(2): 307-318. |
25 | 许锋, 罗雄麟. 基于动态优化的催化裂化装置再生器裕量分析与控制设计(Ⅱ): 求解方法与结果分析[J]. 化工学报, 2009, 60(3): 683-690. |
Xu F, Luo X L. Margin analysis and control design of FCCU regenerator based on dynamic optimization (Ⅱ): Solution and result analysis[J]. CIESC Journal, 2009, 60(3): 683-690. | |
26 | Sanchez-Sanchez K B, Ricardez-Sandoval L A. Simultaneous design and control under uncertainty using model predictive control[J]. Industrial & Engineering Chemistry Research, 2013, 52(13): 4815-4833. |
27 | 张荫荣, 亓玉台, 李淑勋, 等. 重油催化裂化取热技术及其进展[J]. 抚顺石油学院学报, 2002, 22(3): 22-26. |
Zhang Y R, Qi Y T, Li S X, et al. The technology of catalyst cooler in RFCCU and its progress[J]. Journal of Fushun Petroleum Institute, 2002, 22(3): 22-26. | |
28 | Asteasuain M, Brandolin A, Sarmoria C, et al. Simultaneous design and control of a semibatch styrene polymerization reactor[J]. Industrial & Engineering Chemistry Research, 2004, 43(17): 5233-5247. |
29 | Ricardez-Sandoval L A. Optimal design and control of dynamic systems under uncertainty: a probabilistic approach[J]. Computers & Chemical Engineering, 2012, 43: 91-107. |
30 | 许锋, 罗雄麟. 基于动态优化的催化裂化装置再生器裕量分析与控制设计(Ⅰ): 动态优化的数学描述[J]. 化工学报, 2009, 60(3): 675-682. |
Xu F, Luo X L. Margin analysis and control design of FCCU regenerator based on dynamic optimization (Ⅰ): Mathematical description of dynamic optimization[J]. CIESC Journal, 2009, 60(3): 675-682. | |
31 | 林嘉奖. 混杂参数系统的动态优化: 以催化裂化装置为例[D]. 北京: 中国石油大学(北京), 2020: 15-21. |
Lin J J. Dynamic optimization of the hybrid parameter system: taking the catalytic cracking unit as an example[D]. Beijing: China University of Petroleum, 2020: 15-21. | |
32 | 王锐. 参量型化工过程控制与工艺集成设计: 以催化裂化反应再生系统为例[D]. 北京: 中国石油大学(北京), 2014: 7-17. |
Wang R. Integration design and control of chemical process with batch manipulated variables:fluidized catalytic cracking unit as an example[D]. Beijing: China University of Petroleum, 2014: 7-17. | |
33 | 王春峰, 万德斌, 王宁, 等. 催化外取热器换热分析[J]. 当代化工, 2010, 39(5): 611-613. |
Wang C F, Wan D B, Wang N, et al. Heat transfer analysis of external catalyst cooler in FCC[J]. Contemporary Chemical Industry, 2010, 39(5): 611-613. | |
34 | 闫金龙. 催化裂化装置外取热器核算及失效分析[D]. 北京: 中国石油大学(北京), 2010:3-9. |
Yan J L. FCCU external heat exchanger accounting and failure analysis[D]. Beijing:China University of Petroleum, 2010: 3-9. |
[1] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[2] | 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269. |
[3] | 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758. |
[4] | 王德宏, 孙琳, 罗雄麟. 海水淡化系统多效蒸发传热温差全周期渐变优化分析[J]. 化工学报, 2022, 73(12): 5469-5482. |
[5] | 贾小平, 石磊, 杨友麒. 工业园区生态化发展的挑战与过程系统工程的机遇[J]. 化工学报, 2021, 72(5): 2373-2391. |
[6] | 谢府命, 许锋, 罗雄麟. 工艺调度对乙炔加氢反应器优化运行策略的影响分析[J]. 化工学报, 2021, 72(5): 2718-2726. |
[7] | 陈春波, 罗雄麟, 孙琳. 多效蒸发海水淡化系统可行域时变分析与全周期操作优化[J]. 化工学报, 2021, 72(11): 5686-5695. |
[8] | 冯思琦, 罗雄麟. 模式切换类经济预测控制切换时间在线估计[J]. 化工学报, 2020, 71(S2): 225-240. |
[9] | 张锁江, 张香平, 聂毅, 鲍迪, 董海峰, 吕兴梅. 绿色过程系统工程[J]. 化工学报, 2016, 67(1): 41-53. |
[10] | 李德芳, 索寒生. 加快智能工厂进程, 促进生态文明建设[J]. 化工学报, 2014, 65(2): 374-380. |
[11] | 罗雄麟 许锋. 基于广义状态观测器的催化裂化装置软仪表[J]. 化工学报, 2013, 64(5): 0-0. |
[12] | 罗雄麟 许锋. 基于广义状态观测器的催化裂化装置软仪表[J]. 化工学报, 2013, 64(5): 0-0. |
[13] | 许锋, 汪晔晔, 罗雄麟. 基于广义状态观测器的催化裂化装置软仪表[J]. 化工学报, 2013, 64(5): 1683-1695. |
[14] | 覃伟中,朱 兵,李 强,陈丙珍. 生物炼制的挑战与过程系统工程的机遇 [J]. CIESC Journal, 2010, 29(5): 922-. |
[15] | 许锋, 罗雄麟. 催化裂化装置再生器主风裕量的动态分析 [J]. 化工学报, 2008, 59(1): 126-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||