化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1232-1245.doi: 10.11949/0438-1157.20211245

• 过程系统工程 • 上一篇    下一篇

重油催化裂化装置产品分布调控与优化模拟分析

张建飞(),林嘉奖,罗雄麟,许锋()   

  1. 中国石油大学(北京)自动化系,北京 102249
  • 收稿日期:2021-08-26 修回日期:2021-09-30 出版日期:2022-03-15 发布日期:2022-03-14
  • 通讯作者: 许锋 E-mail:1361104589@qq.com;xufeng@cup.edu.cn
  • 作者简介:张建飞(1990—),男,博士研究生,1361104589@qq.com
  • 基金资助:
    国家自然科学基金项目(21676295)

Modeling analysis for product distribution control and optimization of heavy oil FCCU

Jianfei ZHANG(),Jiajiang LIN,Xionglin LUO,Feng XU()   

  1. Department of Automation, China University of Petroleum, Beijing 102249, China
  • Received:2021-08-26 Revised:2021-09-30 Published:2022-03-15 Online:2022-03-14
  • Contact: Feng XU E-mail:1361104589@qq.com;xufeng@cup.edu.cn

摘要:

重油催化裂化焦炭产率较高,会加重再生器负荷,降低剂油比和轻质油收率。对此,在催化裂化装置基础上添加外取热器。通过采用外取热和外甩油浆相结合的方法,实现重油催化裂化轻质油收率的提高。外取热器的作用是为了快速有效将再生器部分过多的热量取走,达到再生催化剂降温的目的。外甩油浆的作用是为了降低焦炭产率,减少烧焦产生热量。热量的降低可以有效提高剂油比,增加轻质油收率。原料残炭值的大小对产品分布有直接影响。原料残炭值越大,催化裂化装置的反应器部分产生焦炭越多,待生催化剂上含碳量也会升高,到达再生器烧焦以后释放大量的热量,热量增加不仅会影响再生器的寿命,也会使催化裂化装置中的剂油比降低,从而降低轻质油收率。通过控制向量参数化方法对CO助燃剂、主风、外取热和外甩油浆进行了不同层次的调控与优化,结果发现,对于重油催化裂化,CO助燃剂、主风的优化影响效果有限,而外取热和外甩油浆相互促进可以有效提高剂油比和轻质油收率。

关键词: 过程系统工程, 催化裂化装置, 外取热装置, 外甩油浆, 轻质油收率, 调控与优化

Abstract:

The higher coke yield in heavy oil fluid catalytic cracking unit(FCCU) will increase the load of the regenerator and reduce the catalyst-to-oil ratio(COR) and light oil yield. In this regard, an external heat extractor is added to the catalytic cracking unit. By adopting the method of combining external heat extraction and external oil slurry rejection, the yield of light oil from the catalytic cracking of heavy oil can be improved. The function of the external cooler is to remove the excess heat of the regenerator part quickly and effectively, so as to achieve the purpose of cooling the regeneration catalyst. The function of the slurry drawoff is to reduce the coke yield and reduce the heat generation of scorching. The reduction of heat can effectively increase the COR and increase the light oil yield. The value of carbon residue in crude oil has a direct impact on product distribution. The higher the residual carbon value of the feedstock, the more coke is produced in the reactor of FCC unit. The carbon mass fraction on the spent catalyst will also increase, and after reaching the regenerator, it will release a large amount of heat. The increase in heat will not only affect the life of the regenerator, but also reduce the COR in FCCU, thereby reduce the light oil yield. In this paper, the control vector parameterization method is used to control and optimize the CO combustion-supporting agent, main air flow rate, heat of external cooler and slurry drawoff on various levels. The results show that the optimization effect of CO combustion-supporting agent and main air flow rate is limited for heavy oil FCCU, but the mutual promotion of heat of external cooler and slurry drawoff can effectively improve the COR and the light oil yield.

Key words: process system engineering, FCCU, external cooler, slurry drawoff, light oil yield, regulation and optimization

中图分类号: 

  • TQ 021.8

图1

工作流程图"

图2

主风、CO助燃剂操作示意图"

表1

FCCU基本运行条件"

变量数值
Ffresh85 t/h
Fhco12.75 t/h
Fslurry7.25 t/h
GCrg2504.2 kg/s
COR4.81
Vair,rg149340 m3/h
Vair,rg26658 m3/h
Mpro4 kg
xpro0.004%(mass)
W24/5/5 kg
Triser493.5℃
Trg1695.4℃
Trg2703.6℃
CSC0.95 kg/kg
Crg20.04 kg/kg

图3

CO助燃剂、主风对减压馏分油作用的敏感性分析"

图4

带外取热器的催化裂化装置流程图"

图5

取热器单元示意图"

图6

CO助燃剂、主风对重质油操作的敏感性分析"

图7

取热器、外甩油浆量对重质油操作的敏感性分析"

表2

重质油催化裂化的产品分布"

序号外甩油浆量/(t/h)取热比例/%柴油/%汽油/%焦炭/%气体/%烧焦罐底部温度/℃密相床温度/℃
10030.9243.6510.3715.06709.4737.4
21.81030.1042.049.8214.55700.9728.6
33.63030.0540.418.6513.72689.8717.2
45.44029.9939.847.8511.71676.8704.6
57.25030.0139.516.1510.17666.2691.9
601030.9744.6410.2714.12707.5730.4
71.811030.0443.249.8313.36699.5726.2
83.631030.0642.099.2111.56688.3721.7
95.441030.3040.098.6110.39675.6700.6
107.251030.1139.847.049.86664.7688.6
1102031.5145.2010.0313.25705.5723.5
121.812031.1943.129.6312.53698.1715.8
133.632030.8341.398.7311.97687.7714.1
145.442030.4340.637.8110.52674.2699.3
157.252030.1740.216.0110.45662.1686.2
1603031.6846.1810.9612.19703.5717.4
171.813031.2244.1510.7310.16696.8715.5
183.633031.0842.0910.459.30685.0713.5
195.443030.7041.148.449.12672.6696.7
207.253030.4240.416.308.72661.3684.1

图8

基于外取热和外甩油浆的综合操作区域图"

图9

优化CO助燃剂、主风和外取热对重质油催化裂化的敏感性分析"

表3

CO助燃剂、主风和外取热优化前后参数对比和经济效益变化"

(a) 优化前后参数对比
参数优化前优化后
Mpro/kg55.17
Vair,rg1/(m3/h)4934049011
COR4.124.23
η0/%2021.55
y/(kg/kg)72.2272.43
yn/(kg/kg)41.3941.52
yd/(kg/kg)30.8330.91

图10

优化CO助燃剂、主风和外甩油浆对重质油催化裂化的敏感性分析"

表4

CO助燃剂、主风和外甩油浆优化前后参数对比和经济效益变化"

(a) 优化前后参数对比
参数优化前优化后
Mpro/kg54.32
Vair,rg1/(m3/h)4934048694
COR4.124.14
Fdrawoff/(kg/kg)3.633.49
y/(kg/kg)72.2272.38
yn/(kg/kg)41.3941.50
yd/(kg/kg)30.8330.89

图11

优化CO助燃剂、主风、外取热和外甩油浆对重质油催化裂化的敏感性分析"

表5

CO助燃剂、主风、外取热和外甩油浆优化前后参数对比和经济效益变化"

(a) 优化前后参数对比
参数优化前优化后
Mpro/kg54.68
Vair,rg1/(m3/h)4934048741
COR4.124.35
η0/%2020.87
Fdrawoff/(kg/kg)3.633.58
y/(kg/kg)72.2272.94
yn/(kg/kg)41.3941.77
yd/(kg/kg)30.8331.17

表6

不同操作经济效益对比"

操作模式轻质油收率/ %(mass)汽油/ %(mass)柴油/ %(mass)气体/ %(mass)油浆/ %(mass)水蒸气/t年增收益/元
优化CO助燃剂、主风和外取热72.4341.5230.9115.752079.912.54×106
优化CO助燃剂、主风和外甩油浆72.3841.5030.8813.0465.5601.39×106
优化CO助燃剂、主风、外取热和外甩油浆72.9441.7731.1711.8435.7379.382.65×106

图12

优化CO助燃剂、主风、外取热和外甩油浆对重质油残炭不同时的敏感性分析"

1 王锐, 罗雄麟, 许锋. CO燃烧状况可调的催化裂化装置多稳态分析[J]. 化工学报, 2013, 64(8): 2930-2937.
Wang R, Luo X L, Xu F. Multiple steady states of FCCU with varying CO concentration[J]. CIESC Journal, 2013, 64(8): 2930-2937.
2 许锋, 罗雄麟. 催化裂化装置再生器主风裕量的动态分析[J]. 化工学报, 2008, 59(1): 126-134.
Xu F, Luo X L. Analysis of air flow rate margin in FCCU regenerator based on dynamic model[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(1): 126-134.
3 Pinheiro C I C, Fernandes J L, Domingues L, et al. Fluid catalytic cracking (FCC) process modeling, simulation, and control[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 1-29.
4 Hernández-Barajas J R, Vázquez-Román R, Salazar-Sotelo D. Multiplicity of steady states in FCC units: effect of operating conditions[J]. Fuel, 2006, 85(5/6): 849-859.
5 Arbel A, Huang Z P, Rinard I H, et al. Dynamic and control of fluidized catalytic crackers 1: Modeling of the current generation of FCC's[J]. Industrial & Engineering Chemistry Research, 1995, 34(4): 1228-1243.
6 Lee W, Kugelman A M. Number of steady-state operating points and local stability of open-loop fluid catalytic cracker[J]. Industrial & Engineering Chemistry Process Design and Development, 1973, 12(2): 197-204.
7 杨开岩. 重油催化裂化装置外取热器应用[J]. 石油炼制与化工, 2005, 36(1): 44-47.
Yang K Y. Application of external catalyst cooler in RFCC unit[J]. Petroleum Processing and Petrochemicals, 2005, 36(1): 44-47.
8 石宝珍. 催化裂化再生器外取热器换热过程理论分析[J]. 炼油设计, 2000, 30(3): 37-41.
Shi B Z. Theoretical analysis of heat exchange in external catalyst coolers of FCCU[J]. Petroleum Refinery Engineering, 2000, 30(3): 37-41.
9 Fernandes J L, Pinheiro C I C, Oliveira N M C, et al. Steady state multiplicity in an UOP FCC unit with high-efficiency regenerator[J]. Chemical Engineering Science, 2007, 62(22): 6308-6322.
10 Stratiev D, Shishkova I, Ivanov M, et al. Role of catalyst in optimizing fluid catalytic cracking performance during cracking of H-oil-derived gas oils[J]. ACS Omega, 2021, 6(11): 7626-7637.
11 Lu G J, Lu X Y, Liu P. Reactivation of spent FCC catalyst by mixed acid leaching for efficient catalytic cracking[J]. Journal of Industrial and Engineering Chemistry, 2020, 92: 236-242.
12 Miao P P, Miao J, Guo Y L, et al. Efficient conversion of light cycle oil into gasoline with a combined hydrogenation and catalytic cracking process: effect of pre-distillation[J]. Energy & Fuels, 2020, 34(10): 12505-12516.
13 孙富伟. 催化裂化外取热器开发与研究进展[J]. 现代化工, 2015, 35(6): 29-33.
Sun F W. Advances in research and development of external catalyst cooler of FCC[J]. Modern Chemical Industry, 2015, 35(6): 29-33.
14 Arandes J M, de Lasa H I. Simulation and multiplicity of steady states in fluidized FCCUs[J]. Chemical Engineering Science, 1992, 47(9/10/11): 2535-2540.
15 王锐, 罗雄麟, 许锋. 高效再生催化裂化装置多稳态分析: 反应温度开/闭环控制条件对热反馈机制的影响[J]. 化工学报, 2014, 65(9): 3519-3526.
Wang R, Luo X L, Xu F. Multiple steady states of fluid catalytic cracking unit with high-efficiency regenerator: effect of reaction temperature control strategy on heat feedback[J]. CIESC Journal, 2014, 65(9): 3519-3526.
16 Johnson T E. Improve regenerator heat removal [J]. Hydrocarbon Processing, 2011, 70(11): 55-57.
17 许锋, 蒋慧蓉, 王锐, 等. 催化裂化装置裕量评价与瓶颈分析[J]. 化工学报, 2013, 64(6): 2131-2144.
Xu F, Jiang H R, Wang R, et al. Margin evaluation and bottleneck analysis for FCCU[J]. CIESC Journal, 2013, 64(6): 2131-2144.
18 Palos R, Guti􀆧rrez A, Fern􀆦ndez M L, et al. Upgrading of heavy coker naphtha by means of catalytic cracking in refinery FCC unit[J]. Fuel Processing Technology, 2020, 205: 106454.
19 曾思纳. 催化裂化装置外取热器结构设计综述[J]. 广东化工, 2020, 47(17): 267-268, 273.
Zeng S N. Review on structure design of external heat exchanger in FCC unit[J]. Guangdong Chemical Industry, 2020, 47(17): 267-268, 273.
20 Mathew B, Hegab H. Experimental investigation of thermal model of parallel flow microchannel heat exchangers subjected to external heat flux[J]. International Journal of Heat and Mass Transfer, 2012, 55(7/8): 2193-2199.
21 Sakizlis V, Perkins J D, Pistikopoulos E N. Parametric controllers in simultaneous process and control design optimization[J]. Industrial & Engineering Chemistry Research, 2003, 42(20): 4545-4563.
22 Edwards W M, Kim H N. Multiple steady states in FCC unit operations[J]. Chemical Engineering Science, 1988, 43(8): 1825-1830.
23 Nie Y S, Biegler L T, Wassick J M. Integrated scheduling and dynamic optimization of batch processes using state equipment networks[J]. AIChE Journal, 2012, 58(11): 3416-3432.
24 Ricardez-Sandoval L A, Douglas P L, Budman H M. A methodology for the simultaneous design and control of large-scale systems under process parameter uncertainty[J]. Computers & Chemical Engineering, 2011, 35(2): 307-318.
25 许锋, 罗雄麟. 基于动态优化的催化裂化装置再生器裕量分析与控制设计(Ⅱ): 求解方法与结果分析[J]. 化工学报, 2009, 60(3): 683-690.
Xu F, Luo X L. Margin analysis and control design of FCCU regenerator based on dynamic optimization (Ⅱ): Solution and result analysis[J]. CIESC Journal, 2009, 60(3): 683-690.
26 Sanchez-Sanchez K B, Ricardez-Sandoval L A. Simultaneous design and control under uncertainty using model predictive control[J]. Industrial & Engineering Chemistry Research, 2013, 52(13): 4815-4833.
27 张荫荣, 亓玉台, 李淑勋, 等. 重油催化裂化取热技术及其进展[J]. 抚顺石油学院学报, 2002, 22(3): 22-26.
Zhang Y R, Qi Y T, Li S X, et al. The technology of catalyst cooler in RFCCU and its progress[J]. Journal of Fushun Petroleum Institute, 2002, 22(3): 22-26.
28 Asteasuain M, Brandolin A, Sarmoria C, et al. Simultaneous design and control of a semibatch styrene polymerization reactor[J]. Industrial & Engineering Chemistry Research, 2004, 43(17): 5233-5247.
29 Ricardez-Sandoval L A. Optimal design and control of dynamic systems under uncertainty: a probabilistic approach[J]. Computers & Chemical Engineering, 2012, 43: 91-107.
30 许锋, 罗雄麟. 基于动态优化的催化裂化装置再生器裕量分析与控制设计(Ⅰ): 动态优化的数学描述[J]. 化工学报, 2009, 60(3): 675-682.
Xu F, Luo X L. Margin analysis and control design of FCCU regenerator based on dynamic optimization (Ⅰ): Mathematical description of dynamic optimization[J]. CIESC Journal, 2009, 60(3): 675-682.
31 林嘉奖. 混杂参数系统的动态优化: 以催化裂化装置为例[D]. 北京: 中国石油大学(北京), 2020: 15-21.
Lin J J. Dynamic optimization of the hybrid parameter system: taking the catalytic cracking unit as an example[D]. Beijing: China University of Petroleum, 2020: 15-21.
32 王锐. 参量型化工过程控制与工艺集成设计: 以催化裂化反应再生系统为例[D]. 北京: 中国石油大学(北京), 2014: 7-17.
Wang R. Integration design and control of chemical process with batch manipulated variables:fluidized catalytic cracking unit as an example[D]. Beijing: China University of Petroleum, 2014: 7-17.
33 王春峰, 万德斌, 王宁, 等. 催化外取热器换热分析[J]. 当代化工, 2010, 39(5): 611-613.
Wang C F, Wan D B, Wang N, et al. Heat transfer analysis of external catalyst cooler in FCC[J]. Contemporary Chemical Industry, 2010, 39(5): 611-613.
34 闫金龙. 催化裂化装置外取热器核算及失效分析[D]. 北京: 中国石油大学(北京), 2010:3-9.
Yan J L. FCCU external heat exchanger accounting and failure analysis[D]. Beijing:China University of Petroleum, 2010: 3-9.
[1] 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186.
[2] 曹森山, 许锋, 罗雄麟. 基于稳定性的循环物流系统流程模拟——以催化裂化反应-再生系统为例[J]. 化工学报, 2022, 73(3): 1256-1269.
[3] 张兴硕, 罗雄麟, 许锋. 催化裂化装置反再系统动态模拟精细化与控制系统“工艺优先”配对设计[J]. 化工学报, 2022, 73(2): 747-758.
[4] 王德宏, 孙琳, 罗雄麟. 海水淡化系统多效蒸发传热温差全周期渐变优化分析[J]. 化工学报, 2022, 73(12): 5469-5482.
[5] 谢府命, 许锋, 罗雄麟. 工艺调度对乙炔加氢反应器优化运行策略的影响分析[J]. 化工学报, 2021, 72(5): 2718-2726.
[6] 贾小平, 石磊, 杨友麒. 工业园区生态化发展的挑战与过程系统工程的机遇[J]. 化工学报, 2021, 72(5): 2373-2391.
[7] 陈春波, 罗雄麟, 孙琳. 多效蒸发海水淡化系统可行域时变分析与全周期操作优化[J]. 化工学报, 2021, 72(11): 5686-5695.
[8] 冯思琦, 罗雄麟. 模式切换类经济预测控制切换时间在线估计[J]. 化工学报, 2020, 71(S2): 225-240.
[9] 张锁江, 张香平, 聂毅, 鲍迪, 董海峰, 吕兴梅. 绿色过程系统工程[J]. 化工学报, 2016, 67(1): 41-53.
[10] 李德芳, 索寒生. 加快智能工厂进程, 促进生态文明建设[J]. 化工学报, 2014, 65(2): 374-380.
[11] 许锋, 汪晔晔, 罗雄麟. 基于广义状态观测器的催化裂化装置软仪表[J]. 化工学报, 2013, 64(5): 1683-1695.
[12] 罗雄麟 许锋. 基于广义状态观测器的催化裂化装置软仪表[J]. 化工学报, 2013, 64(5): 0-0.
[13] 罗雄麟 许锋. 基于广义状态观测器的催化裂化装置软仪表[J]. 化工学报, 2013, 64(5): 0-0.
[14] 覃伟中,朱 兵,李 强,陈丙珍. 生物炼制的挑战与过程系统工程的机遇 [J]. CIESC Journal, 2010, 29(5): 922-.
[15] 许锋, 罗雄麟. 催化裂化装置再生器主风裕量的动态分析 [J]. 化工学报, 2008, 59(1): 126-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!