1 |
Ju Y G, Maruta K. Microscale combustion: technology development and fundamental research[J]. Progress in Energy and Combustion Science, 2011, 37(6): 669-715.
|
2 |
曹海亮, 年志远, 杨浩林, 等. 平板狭缝间C1~C4烷烃/空气预混射流火焰的燃烧特性[J]. 化工学报, 2016, 67(11): 4609-4614.
|
|
Cao H L, Nian Z Y, Yang H L, et al. Combustion characteristics of premixed C1—C4 alkane jet flames between two parallel walls[J]. CIESC Journal, 2016, 67(11): 4609-4614.
|
3 |
Häber T, Suntz R. Effect of different wall materials and thermal-barrier coatings on the flame-wall interaction of laminar premixed methane and propane flames[J]. International Journal of Heat and Fluid Flow, 2018, 69: 95-105.
|
4 |
Li F, Yang H L, Zhang J Q, et al. OH-PLIF investigation of Y2O3-ZrO2 coating improving flame stability in a narrow channel[J]. Chemical Engineering Journal, 2021, 405: 126708.
|
5 |
Federici J A, Vlachos D G. A computational fluid dynamics study of propane/air microflame stability in a heat recirculation reactor[J]. Combustion and Flame, 2008, 153(1/2): 258-269.
|
6 |
万建龙, 范爱武, 刘毅, 等. 固体材料对微型钝体燃烧器吹熄极限的影响[J]. 化工学报, 2014, 65(3): 1012-1017.
|
|
Wan J L, Fan A W, Liu Y, et al. Effects of solid material on blow-off limit in micro bluff body combustor[J]. CIESC Journal, 2014, 65(3): 1012-1017.
|
7 |
Kang X, Veeraragavan A. Experimental investigation of flame stability limits of a mesoscale combustor with thermally orthotropic walls[J]. Applied Thermal Engineering, 2015, 85: 234-242.
|
8 |
Sui R. Catalytic microreactors for power generation and hetero-/homogeneous combustion of hydrogen/air over platinum[D]. Zurich: Sciences of Eth Zurich, 2017.
|
9 |
Saiki Y, Suzuki Y. Effect of wall surface reaction on a methane-air premixed flame in narrow channels with different wall materials[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3395-3402.
|
10 |
Strassacker C, Bykov V, Maas U. REDIM reduced modeling of quenching at a cold wall including heterogeneous wall reactions[J]. International Journal of Heat and Fluid Flow, 2018, 69: 185-193.
|
11 |
Strassacker C, Bykov V, Maas U. Reduced modeling of flame-wall-interactions of premixed isooctane-air systems including detailed transport and surface reactions[J]. Proceedings of the Combustion Institute, 2021, 38(1): 1063-1070.
|
12 |
欧阳静, 周正, 伦惠林, 等. 氧化锆(ZrO2)的热、化学性质与应用[J]. 中国材料进展, 2014, 33(6): 365-375.
|
|
Ouyang J, Zhou Z, Lun H L, et al. Thermal and chemical properties of zirconia (ZrO2) and their applications[J]. Materials China, 2014, 33(6): 365-375.
|
13 |
Clarke D R. Materials selection guidelines for low thermal conductivity thermal barrier coatings[J]. Surface and Coatings Technology, 2003, 163/164: 67-74.
|
14 |
Li G R, Li W, Zhang M H, et al. Characterization and catalytic application of homogeneous nano-composite oxides ZrO2-Al2O3[J]. Catalysis Today, 2004, 93/94/95: 595-601.
|
15 |
Yang X C, Riehemann W, Dubiel M, et al. Nanoscaled ceramic powders produced by laser ablation[J]. Materials Science and Engineering: B, 2002, 95(3): 299-307.
|
16 |
Abbas S M, Elayaperumal A. Experimental investigation on the effect of ceramic coating on engine performance and emission characteristics for cleaner production[J]. Journal of Cleaner Production, 2019, 214: 506-513.
|
17 |
Aydın S, Sayın C. Impact of thermal barrier coating application on the combustion, performance and emissions of a diesel engine fueled with waste cooking oil biodiesel-diesel blends[J]. Fuel, 2014, 136(15): 334-340.
|
18 |
Liang B, Zhang G, Liao H L, et al. Friction and wear behavior of ZrO2-Al2O3 composite coatings deposited by air plasma spraying: correlation with physical and mechanical properties[J]. Surface and Coatings Technology, 2009, 203(20/21): 3235-3242.
|
19 |
Li F, Yang H L, Zeng X J, et al. Enhancing the flame stability in a slot burner using yttrium-doped zirconia coating[J]. Fuel, 2020, 262(1): 116502.
|
20 |
Zhu J, van Ommen J G, Knoester A, et al. Effect of surface composition of yttrium-stabilized zirconia on partial oxidation of methane to synthesis gas[J]. Journal of Catalysis, 2005, 230(2): 291-300.
|
21 |
Wu Y, Chen J J, Hu W, et al. Phase transformation and oxygen vacancies in Pd/ZrO2 for complete methane oxidation under lean conditions[J]. Journal of Catalysis, 2019, 377: 565-576.
|
22 |
李淑莲, 陈光文, 孙继良, 等. CeO2-ZrO2复合氧化物对金属蜂窝整体催化剂性能的影响[J]. 催化学报, 2002, 23(4): 341-344.
|
|
Li S L, Chen G W, Sun J L, et al. Effect of CeO2-ZrO2 composite oxide on performance of catalyst with metal monolith substrate[J]. Chinese Journal of Catalysis, 2002, 23(4): 341-344.
|
23 |
Kozlov A I, Kim D H, Yezerets A, et al. Effect of preparation method and redox treatment on the reducibility and structure of supported ceria-zirconia mixed oxide[J]. Journal of Catalysis, 2002, 209(2): 417-426.
|
24 |
Milcarek R J, Garrett M J, Wang K, et al. Micro-tubular flame-assisted fuel cells running methane[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20670-20679.
|
25 |
曾文, 解茂昭. 催化燃烧中表面反应-气相反应间相互作用及其对均质压燃发动机着火特性的影响[J]. 化工学报, 2006, 57(12): 2878-2884.
|
|
Zeng W, Xie M Z. Interactions between surface reactions and gas phase reactions in catalytic combustion and their influence on ignition of HCCI engine[J]. CIESC Journal, 2006, 57(12): 2878-2884.
|
26 |
Kim K T, Lee D H, Kwon S. Effects of thermal and chemical surface-flame interaction on flame quenching[J]. Combustion and Flame, 2006, 146(1/2): 19-28.
|
27 |
喻健良, 胡春明, 李江涛, 等. 平板阻火单元温度变化对火焰淬熄的影响[J]. 燃烧科学与技术, 2007, 13(1): 1-4.
|
|
Yu J L, Hu C M, Li J T, et al. Influence of parallel plate temperature on flame quenching[J]. Journal of Combustion Science and Technology, 2007, 13(1): 1-4.
|
28 |
Wang J F, Carson J K, North M F, et al. A new approach to modelling the effective thermal conductivity of heterogeneous materials[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 3075-3083.
|
29 |
Ronney P D. Analysis of non-adiabatic heat-recirculating combustors[J]. Combustion and Flame, 2003, 135(4): 421-439.
|
30 |
Veeraragavan A, Cadou C P. Flame speed predictions in planar micro/mesoscale combustors with conjugate heat transfer[J]. Combustion and Flame, 2011, 158(11): 2178-2187.
|
31 |
黄夏, 黄勇. 本生灯预混火焰淬熄距离实验分析[J]. 北京航空航天大学学报, 2015, 41(8): 1513-1519.
|
|
Huang X, Huang Y. Experimental analysis of wall quenching distance of a premixed Bunsen flame[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(8): 1513-1519.
|
32 |
Yamamoto K, Ozeki M, Hayashi N, et al. Burning velocity and OH concentration in premixed combustion[J]. Proceedings of the Combustion Institute, 2009, 32(1): 1227-1235.
|