化工学报 ›› 2022, Vol. 73 ›› Issue (2): 504-520.DOI: 10.11949/0438-1157.20211000
收稿日期:
2021-07-19
修回日期:
2021-11-16
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
颜蓓蓓
作者简介:
董晓珊(1996—),女,博士研究生,基金资助:
Xiaoshan DONG1(),Jian LI1,Beibei YAN1(),Guanyi CHEN1,2,3
Received:
2021-07-19
Revised:
2021-11-16
Online:
2022-02-05
Published:
2022-02-18
Contact:
Beibei YAN
摘要:
钙钛矿催化剂优异的氧化还原性能、离子迁移率、热稳定性和较低的生产成本,使得其在生物质热化学利用领域具有广阔的应用前景。基于生物质热解/气化、生物质重整制氢和生物质下游产物化学合成等应用场景,重点阐述并总结了钙钛矿催化剂的催化性能和机制。聚焦于金属阳离子的催化作用和晶格氧的氧化还原作用,从A/B位离子取代、空间结构改变等方面总结了钙钛矿催化剂的优化设计方法。为钙钛矿催化剂在生物质热化学利用领域的应用与优化指明了方向。
中图分类号:
董晓珊, 李健, 颜蓓蓓, 陈冠益. 钙钛矿催化剂在生物质热化学利用领域的研究进展[J]. 化工学报, 2022, 73(2): 504-520.
Xiaoshan DONG, Jian LI, Beibei YAN, Guanyi CHEN. Research progress of perovskite catalysts in thermochemical utilization of biomass[J]. CIESC Journal, 2022, 73(2): 504-520.
1 | 肖陆飞, 哈云, 孟飞, 等. 生物质气化技术研究与应用进展[J]. 现代化工, 2020, 40(12): 68-72, 76. |
Xiao L F, Ha Y, Meng F, et al. Research and application progress on biomass gasification technologies[J]. Modern Chemical Industry, 2020, 40(12): 68-72, 76. | |
2 | Carlos R M, Khang D B. Characterization of biomass energy projects in Southeast Asia[J]. Biomass and Bioenergy, 2008, 32(6): 525-532. |
3 | Guan G Q, Kaewpanha M, Hao X G, et al. Catalytic steam reforming of biomass tar: prospects and challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 450-461. |
4 | Claude V, Courson C, Köhler M, et al. Overview and essentials of biomass gasification technologies and their catalytic cleaning methods[J]. Energy & Fuels, 2016, 30(11): 8791-8814. |
5 | Cao L C, Yu I K M, Xiong X N, et al. Biorenewable hydrogen production through biomass gasification: a review and future prospects[J]. Environmental Research, 2020, 186: 109547. |
6 | Bulushev D A, Ross J R H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review[J]. Catalysis Today, 2011, 171(1): 1-13. |
7 | 仉利, 姚宗路, 赵立欣, 等. 生物质热解制备高品质生物油研究进展[J]. 化工进展, 2021, 40(1): 139-150. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on preparation of high quality bio-oil by pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 139-150. | |
8 | 张小雷, 李小华, 张瑾, 等. Na2CO3处理HZSM-5分子筛在线催化生物质热解焦油的研究[J]. 太阳能学报, 2020, 41(4): 264-271. |
Zhang X L, Li X H, Zhang J, et al. Study on online catalytic upgrading of biomass tar with Na2CO3 solution treated HZSM-5 zeolite[J]. Acta Energiae Solaris Sinica, 2020, 41(4): 264-271. | |
9 | 彭梦妮, 闫志国, 殷霞, 等. 钙钛矿氧化物催化研究进展[J]. 应用化工, 2020, 49(1): 212-216. |
Peng M N, Yan Z G, Yin X, et al. Progress in perovskite oxide catalysis[J]. Applied Chemical Industry, 2020, 49(1): 212-216. | |
10 | Libby W F. Promising catalyst for auto exhaust[J]. Science, 1971, 171(3970): 499-500. |
11 | 陈彦广, 闫伟宁, 韩洪晶, 等. 钙钛矿氧化物的制备及其在环境保护中的应用[J]. 硅酸盐通报, 2016, 35(7): 2142-2148. |
Chen Y G, Yan W N, Han H J, et al. Preparation of perovskite oxide and its application in environmental protection[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(7): 2142-2148. | |
12 | Arandiyan H, Wang Y, Sun H Y, et al. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications[J]. Chemical Communications, 2018, 54(50): 6484-6502. |
13 | Zhang C X, Zhao P Y, Liu S X, et al. Three-dimensionally ordered macroporous perovskite materials for environmental applications[J]. Chinese Journal of Catalysis, 2019, 40(9): 1324-1338. |
14 | Zhang C H, Cao H J, Wang C, et al. Catalytic mechanism and pathways of 1, 2-dichloropropane oxidation over LaMnO3 perovskite: an experimental and DFT study[J]. Journal of Hazardous Materials, 2021, 402: 123473. |
15 | Hwang J, Rao R R, Giordano L, et al. Perovskites in catalysis and electrocatalysis[J]. Science, 2017, 358(6364): 751-756. |
16 | Zhu Y L, Zhou W, Shao Z P. Perovskite/carbon composites: applications in oxygen electrocatalysis[J]. Small, 2017, 13(12): 1603793. |
17 | Wu M D, Chen S Y, Xiang W G. Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides[J]. Chemical Engineering Journal, 2020, 387: 124101. |
18 | Wang W, Tadé M O, Shao Z P. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment[J]. Chemical Society Reviews, 2015, 44(15): 5371-5408. |
19 | Kanhere P, Chen Z. A review on visible light active perovskite-based photocatalysts[J]. Molecules (Basel, Switzerland), 2014, 19(12): 19995-20022. |
20 | Tanaka H, Misono M. Advances in designing perovskite catalysts[J]. Current Opinion in Solid State and Materials Science, 2001, 5(5): 381-387. |
21 | Polo-Garzon F, Wu Z L. Acid-base catalysis over perovskites: a review[J]. Journal of Materials Chemistry A, 2018, 6(7): 2877-2894. |
22 | 杨泽, 李挺, 王美君, 等. Ni基生物质焦油重整催化剂的研究进展[J]. 化工进展, 2016, 35(10): 3155-3163. |
Yang Z, Li T, Wang M J, et al. Research progress on Ni-based catalyst for tar reforming in biomass gasification[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3155-3163. | |
23 | Bashan V, Ust Y. Perovskite catalysts for methane combustion: applications, design, effects for reactivity and partial oxidation[J]. International Journal of Energy Research, 2019, 43(14): 7755-7789. |
24 | 仉利, 姚宗路, 赵立欣, 等.生物质热化学转化提质及其催化剂研究进展[J].化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
25 | 李倩, 刘石明, 成功, 等. La0.5Ca0.5Ni0.5Fe0.5O3催化剂的制备及其对生物质热解特性的影响[J]. 环境科学学报, 2012, 32(8): 1827-1832. |
Li Q, Liu S M, Cheng G, et al. Synthesis of La0.5Ca0.5Ni0.5Fe0.5O3 catalysts and its catalytic performance in the pyrolysis of biomass[J]. Acta Scientiae Circumstantiae, 2012, 32(8): 1827-1832. | |
26 | Yarbay Şahin R Z, Özbay N. Perspective on catalytic biomass pyrolysis bio-oils: essential role of synergistic effect of metal species co-substitution in perovskite type catalyst[J]. Catalysis Letters, 2021, 151(5): 1406-1417. |
27 | 陈彦广, 王新惠, 韩洪晶, 等. CaZr1-xFexO3催化热解甘蔗渣木质素制备酚类化合物[J]. 高等学校化学学报, 2017, 38(2): 252-260. |
Chen Y G, Wang X H, Han H J, et al. Production of phenolic compounds from bagasse lignin via catalytic pyrolysis of CaZr1-xFexO3[J]. Chemical Journal of Chinese Universities, 2017, 38(2): 252-260. | |
28 | Wang H Y, Han H J, Sun E H, et al. Production of aryl oxygen-containing compounds from catalytic pyrolysis of bagasse lignin over LaTixFe1-xO3[J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1939-1944. |
29 | Wang H Y, Han H J, Zhang Y N, et al. Influence of calcination temperature for LaTi0.2Fe0.8O3 on catalytic pyrolysis of bagasse lignin[J]. Journal of Rare Earths, 2019, 37(8): 837-844. |
30 | Wang H Y, Han H J, Sun E H, et al. Production of aryl oxygen-containing compounds via catalytic pyrolysis of bagasse lignin over La0.8M0.2FeO3 (M=La, Ca, Sr, Ba)[J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104624. |
31 | Liu C L, Wang W J, Chen D. Hydrogen-rich syngas production from chemical looping gasification of biomass char with CaMn1-xFexO3[J]. Energy & Fuels, 2018, 32(9): 9541-9550. |
32 | Chen G Y, Yao J G, Liu J, et al. Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry[J]. Bioresource Technology, 2015, 198:108-114. |
33 | Yao J G, Liu J, Hofbauer H, et al. Biomass to hydrogen-rich syngas via steam gasification of bio-oil/biochar slurry over LaCo1-xCuxO3 perovskite-type catalysts[J]. Energy Conversion and Management, 2016, 117: 343-350. |
34 | Kabir G, Hameed B H. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 945-967. |
35 | Yu J Q, Guo Q H, Gong Y, et al. A review of the effects of alkali and alkaline earth metal species on biomass gasification[J]. Fuel Processing Technology, 2021, 214: 106723. |
36 | Nzihou A, Stanmore B, Sharrock P. A review of catalysts for the gasification of biomass char, with some reference to coal[J]. Energy, 2013, 58: 305-317. |
37 | Jiang L, Hu S, Xiang J, et al. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process[J]. Bioresource Technology, 2012, 116: 278-284. |
38 | Ding H R, Xu Y Q, Luo C, et al. Synthesis and characteristics of BaSrCoFe-based perovskite as a functional material for chemical looping gasification of coal[J]. International Journal of Hydrogen Energy, 2016, 41(48): 22846-22855. |
39 | Luo S Y, Xiao B, Hu Z Q, et al. Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: influence of temperature and steam on gasification performance[J]. International Journal of Hydrogen Energy, 2009, 34(5): 2191-2194. |
40 | 张玉黎, 肖睿, 何光莹. Fe/La/SBA-15对生物质气化影响研究[J]. 工程热物理学报, 2013, 34(1): 173-176. |
Zhang Y L, Xiao R, He G Y. Catalytic steam gasification of biomass with Fe/La/SBA-15 catalyst[J]. Journal of Engineering Thermophysics, 2013, 34(1): 173-176. | |
41 | Zhang Z H, Ou Z L, Qin C L, et al. Roles of alkali/alkaline earth metals in steam reforming of biomass tar for hydrogen production over perovskite supported Ni catalysts[J]. Fuel, 2019, 257: 116032. |
42 | Ma M, Müller M, Richter J, et al. Investigation of combined catalyst and oxygen carrier systems for the partial oxidation of naphthalene as model tar from biomass gasification[J]. Biomass and Bioenergy, 2013, 53: 65-71. |
43 | Grieco E M, Gervasio C, Baldi G. Lanthanum-chromium-nickel perovskites for the catalytic cracking of tar model compounds[J]. Fuel, 2013, 103: 393-397. |
44 | Laosiripojana N, Sutthisripok W, Charojrochkul S, et al. Development of Ni-Fe bimetallic based catalysts for biomass tar cracking/reforming: effects of catalyst support and co-fed reactants on tar conversion characteristics[J]. Fuel Processing Technology, 2014, 127: 26-32. |
45 | Liu C L, Chen D, Cao Y, et al. Catalytic steam reforming of in-situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas[J]. Renewable Energy, 2020, 161: 408-418. |
46 | Ammendola P, Lisi L, Piriou B, et al. Rh-perovskite catalysts for conversion of tar from biomass pyrolysis[J]. Chemical Engineering Journal, 2009, 154(1/2/3): 361-368. |
47 | Ammendola P, Piriou B, Lisi L, et al. Dual bed reactor for the study of catalytic biomass tars conversion[J]. Experimental Thermal and Fluid Science, 2010, 34(3): 269-274. |
48 | Liu C L, Chen D, Wang W J. Hydrogen-rich syngas production from chemical looping steam reforming of bio-oil model compound: effect of bimetal on LaNi0.8M0.2O3 (M = Fe, Co, Cu, and Mn)[J]. International Journal of Energy Research, 2019, 43(9): 4534-4545. |
49 | Wang Z J, Wang H, Liu Y. La1-xCaxFe1-xCoxO3-a stable catalyst for oxidative steam reforming of ethanol to produce hydrogen[J]. RSC Advances, 2013, 3(25): 10027-10036. |
50 | Zheng W T, Sun K Q, Liu H M, et al. Nanocomposite Ni/ZrO2: highly active and stable catalyst for H2 production via cyclic stepwise methane reforming reactions[J]. International Journal of Hydrogen Energy, 2012, 37(16): 11735-11747. |
51 | 马帅, 胡笑颖, 董长青, 等. 生物质焦油模型化合物脱除研究进展[J]. 林产化学与工业, 2019, 39(4): 1-8. |
Ma S, Hu X Y, Dong C Q, et al. Research progress in the removal of biomass tar model compounds[J]. Chemistry and Industry of Forest Products, 2019, 39(4): 1-8. | |
52 | 李乐豪, 闻光东, 杨启炜, 等. 生物质焦油处理方法研究进展[J]. 化工进展, 2017, 36(7): 2407-2416. |
Li L H, Wen G D, Yang Q W, et al. Advance in the treatment methods of biomass tar[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2407-2416. | |
53 | Valderrama Rios M L V, González A M, Lora E E S, et al. Reduction of tar generated during biomass gasification: a review[J]. Biomass and Bioenergy, 2018, 108: 345-370. |
54 | Zhang Z K, Liu L N, Shen B X, et al. Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 1086-1109. |
55 | Mukai D, Tochiya S, Murai Y, et al. Role of support lattice oxygen on steam reforming of toluene for hydrogen production over Ni/La0.7Sr0.3AlO3-δ catalyst[J]. Applied Catalysis A: General, 2013, 453: 60-70. |
56 | Takise K, Higo T, Mukai D, et al. Highly active and stable Co/La0.7Sr0.3AlO3-δ catalyst for steam reforming of toluene[J]. Catalysis Today, 2016, 265: 111-117. |
57 | Man L F, Wong W T, Yung K F. Alkali hydrothermal synthesis of Na0.1Ca0.9TiO3 nanorods as heterogeneous catalyst for transesterification of camelina sativa oil to biodiesel[J]. Journal of Cluster Science, 2012, 23(3): 873-884. |
58 | Kesić Ž, Lukić I, Zdujić M, et al. Assessment of CaTiO3, CaMnO3, CaZrO3 and Ca2Fe2O5 perovskites as heterogeneous base catalysts for biodiesel synthesis[J]. Fuel Processing Technology, 2016, 143: 162-168. |
59 | Ansaloni S, Russo N, Pirone R. Wet air oxidation of industrial lignin case study: influence of the dissolution pretreatment and perovskite-type oxides[J]. Waste and Biomass Valorization, 2018, 9(11): 2165-2179. |
60 | Xiao P, Zhu J J, Zhao D, et al. Porous LaFeO3 prepared by an in situ carbon templating method for catalytic transfer hydrogenation reactions[J]. ACS Applied Materials & Interfaces, 2019, 11(17): 15517-15527. |
61 | Ji Q Q, Bi L, Zhang J T, et al. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction[J]. Energy & Environmental Science, 2020, 13(5): 1408-1428. |
62 | Chen D J, Chen C, Baiyee Z M, et al. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices[J]. Chemical Reviews, 2015, 115(18): 9869-9921. |
63 | Wu G W, Li S R, Zhang C, et al. Glycerol steam reforming over perovskite-derived nickel-based catalysts[J]. Appllied Catalysis B: Environmental, 2014, 144: 277-285. |
64 | Chen G Y, Yao J G, Liu J, et al. Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil[J]. Renewable Energy, 2016, 91: 315-322. |
65 | Sugiura Y, Mukai D, Murai Y, et al. Oxidation resistance of Ni/La0.7Sr0.3AlO3-δ catalyst for steam reforming of model aromatic hydrocarbon[J]. International Journal of Hydrogen Energy, 2013, 38(19): 7822-7829. |
66 | Soongprasit K, Aht-Ong D, Sricharoenchaikul V, et al. Synthesis and catalytic activity of sol-gel derived La-Ce-Ni perovskite mixed oxide on steam reforming of toluene[J]. Current Applied Physics, 2012, 12: S80-S88. |
67 | Liu C L, Chen D, Ashok J, et al. Chemical looping steam reforming of bio-oil for hydrogen-rich syngas production: effect of doping on LaNi0.8Fe0.2O3 perovskite[J]. International Journal of Hydrogen Energy, 2020, 45(41): 21123-21137. |
68 | Zhang Z H, Qin C L, Ou Z L, et al. Resistance of Ni/perovskite catalysts to H2S in toluene steam reforming for H2 production[J]. International Journal of Hydrogen Energy, 2020, 45(51): 26800-26811. |
69 | Oemar U, Ang P S, Hidajat K, et al. Promotional effect of Fe on perovskite LaNixFe1-xO3 catalyst for hydrogen production via steam reforming of toluene[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5525-5534. |
70 | Quitete C P B, Manfro R L, Souza M M V M. Perovskite-based catalysts for tar removal by steam reforming: effect of the presence of hydrogen sulfide[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9873-9880. |
71 | Shao J J, Zeng G M, Li Y D. Effect of Zn substitution to a LaNiO3-δ perovskite structured catalyst in ethanol steam reforming[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17362-17375. |
72 | Oemar U, Ang M L, Chin Y C, et al. Role of lattice oxygen in oxidative steam reforming of toluene as a tar model compound over Ni/La0.8Sr0.2AlO3 catalyst[J]. Catalysis Science & Technology, 2015, 5(7): 3585-3597. |
73 | Liu C L, Li S, Dong C, et al. Hydrogen-rich syngas production by chemical looping steam reforming of acetic acid as bio-oil model compound over Fe-doped LaNiO3 oxygen carriers[J]. International Journal of Hydrogen Energy, 2019, 44(33): 17732-17741. |
74 | Xu J F, Liu J, Zhao Z, et al. Easy synthesis of three-dimensionally ordered macroporous La1-xKxCoO3 catalysts and their high activities for the catalytic combustion of soot[J]. Journal of Catalysis, 2011, 282(1): 1-12. |
75 | Shen Y, Zhao K, He F, et al. The structure-reactivity relationships of using three-dimensionally ordered macroporous LaFe1-xNixO3 perovskites for chemical-looping steam methane reforming[J]. Journal of the Energy Institute, 2019, 92(2): 239-246. |
76 | Song X Y, Guan Q X, Shu Y, et al. Facile in situ encapsulation of highly dispersed Ni@MCM-41 for the trans-decalin production from hydrogenation of naphthalene at low temperature[J]. ChemCatChem, 2019, 11(4): 1286-1294. |
77 | Zeng G M, Shao J J, Gu R X, et al. Facile fabrication of a highly active shell-core LaNi(Mg, Al)O3@Mg-Al catalyst for ethanol steam reforming[J]. Catalysis Today, 2014, 233: 31-37. |
78 | Ge B, Ai D S, Ma J T, et al. Preparation of Sr2Fe1-xScxMoO6-δ nanopowders and its electrical conductivity[J]. Journal of Rare Earths, 2011, 29(7): 673-677. |
79 | Zhao K, Shen Y, Huang Z, et al. Different oxidation routes for lattice oxygen recovery of double-perovskite type oxides LaSrFeCoO6 as oxygen carriers for chemical looping steam methane reforming[J]. Journal of Energy Chemistry, 2017, 26(3): 501-509. |
80 | Tuza P V, Souza M M V M. Steam reforming of methane over catalyst derived from ordered double perovskite: effect of crystalline phase transformation[J]. Catalysis Letters, 2016, 146(1): 47-53. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[5] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[6] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[11] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[12] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[13] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[14] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[15] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||