化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5875-5882.DOI: 10.11949/0438-1157.20211099
收稿日期:
2021-08-02
修回日期:
2021-09-06
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
王海清
作者简介:
王海清(1974—),男,博士,教授,基金资助:
Haiqing WANG1(),Yin LIU1,Xiaolin XU2,Meichen LIU1
Received:
2021-08-02
Revised:
2021-09-06
Online:
2021-11-05
Published:
2021-11-12
Contact:
Haiqing WANG
摘要:
大型石化联合装置为充分回收火炬气,满足环保要求并提高经济效益,通常做法是将火炬气放空管道调节阀的压力给定值设置偏高(相对于分液罐设计压力),使火炬气在分液罐内暂时积聚,随后进入火炬气回收系统。然而停电、火灾等异常紧急工况下多装置同时泄压,富余的火炬气将使火炬放空气流量产生瞬态增高,可能导致火炬头马赫数超高及“脱火”风险。为此提出了一种确定火炬气放空管线压力调节最佳给定值的方法:在火炬气压力调节阀给定值的工艺允许约束范围内,选取使火炬头马赫数符合安全要求的取值,并通过火炬气回收量及回收稳定性来综合衡量火炬气回收经济效益,最终计算出最佳调节给定值。案例表明,通过计算火炬头马赫数和分析火炬气回收经济效益,所提方法确定的压力给定值可以在符合马赫数安全要求的同时,使火炬气回收经济效益达到最高。
中图分类号:
王海清, 刘荫, 许小林, 刘美晨. 考虑下游风险的火炬放空系统压力给定值优化计算[J]. 化工学报, 2021, 72(11): 5875-5882.
Haiqing WANG, Yin LIU, Xiaolin XU, Meichen LIU. Optimal calculation of pressure setting value of flare system considering downstream risks[J]. CIESC Journal, 2021, 72(11): 5875-5882.
火炬气成分 | 体积 分数/% | 温度/ K | 火炬气绝热 指数 | 平均摩尔质量/(kg/kmol) | 火炬头火炬气密度/ (kg/m3) |
---|---|---|---|---|---|
H2O | 5 | 300 | 1.325 | 60.6 | 1.364 |
H2 | 5 | ||||
C5H12 | 80 | ||||
CH4 | 10 |
表1 某厂区火炬气组分及物理性质
Table 1 Flare gas composition and physical properties in the plant
火炬气成分 | 体积 分数/% | 温度/ K | 火炬气绝热 指数 | 平均摩尔质量/(kg/kmol) | 火炬头火炬气密度/ (kg/m3) |
---|---|---|---|---|---|
H2O | 5 | 300 | 1.325 | 60.6 | 1.364 |
H2 | 5 | ||||
C5H12 | 80 | ||||
CH4 | 10 |
压力范围/bar | 进气阀Vr状态 | 压力控制阀Ve状态 | 卸压阀Vs状态 |
---|---|---|---|
0~0.1 | 关闭 | 关闭 | 关闭 |
0.1~0.3 | 开启 | 关闭 | 关闭 |
0.3~0.6 | 关闭 | 开度减小/关闭 | 关闭 |
0.6~0.7 | 关闭 | 开度增大/全开 | 开启 |
表2 分液罐内压力上升过程中各阀门状态随压力的变化
Table 2 The state of each valve changes with the pressure during the pressure rise in the liquid separation tank
压力范围/bar | 进气阀Vr状态 | 压力控制阀Ve状态 | 卸压阀Vs状态 |
---|---|---|---|
0~0.1 | 关闭 | 关闭 | 关闭 |
0.1~0.3 | 开启 | 关闭 | 关闭 |
0.3~0.6 | 关闭 | 开度减小/关闭 | 关闭 |
0.6~0.7 | 关闭 | 开度增大/全开 | 开启 |
取点序号 | Ve给定值/bar | Vs给定值/bar |
---|---|---|
1 | 0.15 | 0.25 |
2 | 0.2 | 0.3 |
3 | 0.25 | 0.35 |
4 | 0.3 | 0.4 |
5 | 0.35 | 0.45 |
6 | 0.4 | 0.5 |
7 | 0.45 | 0.55 |
8 | 0.5 | 0.6 |
9 | 0.55 | 0.65 |
10 | 0.6 | 0.7 |
表3 压力控制阀Ve、卸压阀Vs给定值的可能取值
Table 3 Possible values of given values of pressure control valve Ve and pressure relief valve Vs
取点序号 | Ve给定值/bar | Vs给定值/bar |
---|---|---|
1 | 0.15 | 0.25 |
2 | 0.2 | 0.3 |
3 | 0.25 | 0.35 |
4 | 0.3 | 0.4 |
5 | 0.35 | 0.45 |
6 | 0.4 | 0.5 |
7 | 0.45 | 0.55 |
8 | 0.5 | 0.6 |
9 | 0.55 | 0.65 |
10 | 0.6 | 0.7 |
取点序号 | 火炬头火炬气最大流速/(m/s) | 火炬头马赫数 |
---|---|---|
1 | 133.269 | 0.425 |
2 | 142.389 | 0.454 |
3 | 150.346 | 0.479 |
4 | 157.380 | 0.502 |
5 | 163.662 | 0.522 |
6 | 169.318 | 0.540 |
7 | 174.447 | 0.556 |
8 | 179.124 | 0.571 |
9 | 183.411 | 0.585 |
10 | 187.358 | 0.597 |
表4 N=10时各组取值对应的火炬头马赫数
Table 4 Mach number of the flare head of each group when N=10
取点序号 | 火炬头火炬气最大流速/(m/s) | 火炬头马赫数 |
---|---|---|
1 | 133.269 | 0.425 |
2 | 142.389 | 0.454 |
3 | 150.346 | 0.479 |
4 | 157.380 | 0.502 |
5 | 163.662 | 0.522 |
6 | 169.318 | 0.540 |
7 | 174.447 | 0.556 |
8 | 179.124 | 0.571 |
9 | 183.411 | 0.585 |
10 | 187.358 | 0.597 |
取点序号 | Ve给定值/bar | Vs给定值/bar | 火炬头火炬气最大流速/(m/s) | 火炬头 马赫数 |
---|---|---|---|---|
1 | 0.105 | 0.205 | 123.781 | 0.395 |
? | ? | ? | ? | ? |
30 | 0.25 | 0.35 | 150.346 | 0.479 |
31 | 0.255 | 0.355 | 151.088 | 0.482 |
32 | 0.26 | 0.36 | 151.821 | 0.484 |
33 | 0.265 | 0.365 | 152.545 | 0.486 |
34 | 0.27 | 0.37 | 153.260 | 0.489 |
35 | 0.275 | 0.375 | 153.967 | 0.491 |
36 | 0.28 | 0.38 | 154.665 | 0.493 |
37 | 0.285 | 0.385 | 155.356 | 0.495 |
38 | 0.29 | 0.39 | 156.039 | 0.497 |
39 | 0.295 | 0.395 | 156.713 | 0.500 |
40 | 0.3 | 0.4 | 157.380 | 0.502 |
? | ? | ? | ? | ? |
100 | 0.6 | 0.7 | 187.358 | 0.597 |
表5 N=100时各组取值对应的火炬头马赫数
Table 5 Mach number of the flare head of each group when N=100
取点序号 | Ve给定值/bar | Vs给定值/bar | 火炬头火炬气最大流速/(m/s) | 火炬头 马赫数 |
---|---|---|---|---|
1 | 0.105 | 0.205 | 123.781 | 0.395 |
? | ? | ? | ? | ? |
30 | 0.25 | 0.35 | 150.346 | 0.479 |
31 | 0.255 | 0.355 | 151.088 | 0.482 |
32 | 0.26 | 0.36 | 151.821 | 0.484 |
33 | 0.265 | 0.365 | 152.545 | 0.486 |
34 | 0.27 | 0.37 | 153.260 | 0.489 |
35 | 0.275 | 0.375 | 153.967 | 0.491 |
36 | 0.28 | 0.38 | 154.665 | 0.493 |
37 | 0.285 | 0.385 | 155.356 | 0.495 |
38 | 0.29 | 0.39 | 156.039 | 0.497 |
39 | 0.295 | 0.395 | 156.713 | 0.500 |
40 | 0.3 | 0.4 | 157.380 | 0.502 |
? | ? | ? | ? | ? |
100 | 0.6 | 0.7 | 187.358 | 0.597 |
取点序号 | 火炬气回收量/kg |
---|---|
1 | 1680.581 |
? | ? |
30 | 5025.959 |
31 | 5141.317 |
32 | 5256.675 |
33 | 5372.033 |
34 | 5487.391 |
35 | 5602.749 |
36 | 5718.107 |
37 | 5833.464 |
38 | 5948.822 |
39 | 6064.180 |
表6 火炬气回收量计算结果
Table 6 Calculation results of flare gas recovery
取点序号 | 火炬气回收量/kg |
---|---|
1 | 1680.581 |
? | ? |
30 | 5025.959 |
31 | 5141.317 |
32 | 5256.675 |
33 | 5372.033 |
34 | 5487.391 |
35 | 5602.749 |
36 | 5718.107 |
37 | 5833.464 |
38 | 5948.822 |
39 | 6064.180 |
1 | Eshaghi S, Hamrang F. An innovative techno-economic analysis for the selection of an integrated ejector system in the flare gas recovery of a refinery plant[J]. Energy, 2021, 228: 120594. |
2 | Asadi J, Yazdani E, Hosseinzadeh Dehaghani Y, et al. Technical evaluation and optimization of a flare gas recovery system for improving energy efficiency and reducing emissions[J]. Energy Conversion and Management, 2021, 236: 114076. |
3 | Sinha B, Roy S, Bhagat M. Sustainable green policy by managing flare gas recovery: a case with middle east oil and gas industry[J]. Vision: the Journal of Business Perspective, 2020, 24(1): 35-46. |
4 | Lu S G. Optimize flare gas recovery system design to reduce emissions[J]. Hydrocarbon Processing, 2020: 41-45. |
5 | Sarkar S, Quddus N, Mannan M S, et al. Integrating flare gas with cogeneration systems: operational risk assessment[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104571. |
6 | Amin H, Dhote P, Kanade S. Reboiler pinch: an approach to optimize flare system design during FEED[J]. Hydrocarbon Processing, 2020: 53-57. |
7 | 方士珍, 张红伟. 炼油厂火炬系统的工艺设计[J]. 安徽化工, 2010, 36(3): 67-70. |
Fang S Z, Zhang H W. Flare system process design for refinery[J]. Anhui Chemical Industry, 2010, 36(3): 67-70. | |
8 | 肖宇, 汪本武, 代齐加. 海上油气田火炬放空气回收利用技术研究进展[J]. 海洋石油, 2021, 41(1): 97-100. |
Xiao Y, Wang B W, Dai Q J. Research progress on recovery and utilization technology of vented gas in offshore oil and gas fields[J]. Offshore Oil, 2021, 41(1): 97-100. | |
9 | Chadhuri S, Singh R B. Flare system design for a refinery mega-complex-front end and beyond[J]. Hydrocarbon Processing, 2020: 55-58. |
10 | 赵斌. 大型石化企业火炬系统设计泄放量的确定[J]. 中国资源综合利用, 2017, 35(12): 133-136. |
Zhao B. Study of flare system design load in large-scale petrochemical complex[J]. China Resources Comprehensive Utilization, 2017, 35(12): 133-136. | |
11 | Taleb Z, Ali A E. Study on the flare tip of a gas refinery with various designs of windshields using CFD simulations[J]. Brazilian Journal of Chemical Engineering, 2020, 37(1): 227-236. |
12 | 王鹏. 封闭式地面火炬多点射流火焰高度研究[J]. 消防科学与技术, 2018, 37(6): 732-735. |
Wang P. Study on height of multi-point jet diffusion flame of enclosed ground flare[J]. Fire Science and Technology, 2018, 37(6): 732-735. | |
13 | 王晓霞, 陈伟志. 火炬系统设计应注意的安全因素[J]. 化工设计, 2010, 20(6): 24-26, 44. |
Wang X X, Chen W Z. Safe factor to be noticed in flare system design[J]. Chemical Engineering Design, 2010, 20(6): 24-26, 44. | |
14 | 张杰东, 于安峰, 党文义. 高架火炬泄漏后果模拟研究[J]. 安全、健康和环境, 2016, 16(2): 45-47, 51. |
Zhang J D, Yu A F, Dang W Y. Simulation of the consequences of elevated flare leak[J]. Safety Health & Environment, 2016, 16(2): 45-47, 51. | |
15 | 吴运逸. 输气管道站场放空系统安全设计浅析[J]. 化工管理, 2014(11): 79-80. |
Wu Y Y. Analysis on safety design of venting system of gas pipeline station[J]. Chemical Enterprise Management, 2014(11): 79-80. | |
16 | Jo Y P, Cho Y, Hwang S. Dynamic analysis and optimization of flare network system for topside process of offshore plant[J]. Process Safety and Environmental Protection, 2020, 134: 260-269. |
17 | Pressure-relieving and Depressuring Systems: API STAN[S]. Amercia Petroleum Institute, 2014-06-04. |
18 | 中华人民共和国建设部. 中华人民共和国国家标准: 石油天然气工程设计防火规范[S]. 北京: 中国计划出版社, 2005. |
Ministry of Construction of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China: Code for fire protection design of petroleum and natural gas engineering. [S]. Beijing: China Planning Press, 2005. | |
19 | 王海清, 刘荫, 高智泉, 等. 石化装置改扩建对火炬系统负荷影响的量化分析[J]. 化工进展, 2020, 39(9): 3842-3848. |
Wang H Q, Liu Y, Gao Z Q, et al. Quantitative analysis of influence of petrochemical plant modification and expansion on flare system load[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3842-3848. | |
20 | 刘荫, 王海清, 许小林, 等. 考虑火炬负荷风险的关联联锁回路SIL定级方法[J]. 化工学报, 2021, 72(5): 2754-2762. |
Liu Y, Wang H Q, Xu X L, et al. SIL grading method of associated overpressure interlock protection circuit considering flare load risk[J]. CIESC Journal, 2021, 72(5): 2754-2762. | |
21 | 眭文祺, 王海清, 冯军, 等. 火炬系统中的多压力单元泄放叠加算法研究[C]//第六届CCPS中国过程安全会议论文集. 2018: 762-771. |
Sui W Q, Wang H Q, Feng J, et al. Study on multi-pressure units relief superimposed algorithm in flare system[C]// 6th CCPS China Conference on Process Safety. 2018: 762-771. | |
22 | 李复. 可压缩流体的伯努利方程[J]. 大学物理, 2008, 27(8): 15-18, 27. |
Li F. Bernoulli's equation for compressible flow[J]. College Physics, 2008, 27(8): 15-18, 27. | |
23 | 俞锦涛, 陶宗明. 等温条件下可压缩理想气体的伯努利方程[J]. 物理与工程, 2016, 26(6): 72-74. |
Yu J T, Tao Z M. The Bernoulli's equation of compressible ideal gas under the isothermal condition[J]. Physics and Engineering, 2016, 26(6): 72-74. | |
24 | 何智慧, 李枝禄, 卜掌印. 伯努利方程法计算天然气井底压力[J]. 石化技术, 2017, 24(2): 169. |
He Z H, Li Z L, Bo Z Y. Calculation of natural gas well bottom-hole pressure by Bernoulli Equation[J]. Petrochemical Industry Technology, 2017, 24(2): 169. | |
25 | 王珊珊. Aspen Flare System Analyzer在火炬管网设计与分析中的具体应用[J]. 石油与天然气化工, 2017, 46(1): 111-114. |
Wang S S. Application of Aspen Flare System Analyzer in the design and analysis of flare-net[J]. Chemical Engineering of Oil & Gas, 2017, 46(1): 111-114. | |
26 | 黄付根, 张磊. ASPEN FLARE SYSTEM ANALYZER在火炬系统设计中的应用[J]. 石油化工设计, 2018, 35(3): 43-46, 7. |
Huang F G, Zhang L. Application of Aspen Flare System Analyzer in design of flare system[J]. Petrochemical Design, 2018, 35(3): 43-46, 7. | |
27 | Zolfaghari M, Pirouzfar V, Sakhaeinia H. Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants[J]. Energy, 2017, 124: 481-491. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[4] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[7] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[8] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[9] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[11] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[12] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[13] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[14] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[15] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 573
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 374
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||