化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1795-1804.DOI: 10.11949/0438-1157.20221420

• 材料化学工程与纳米技术 • 上一篇    下一篇

含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能

尹驰1(), 张正国1,2,3, 凌子夜1,2, 方晓明1,2()   

  1. 1.华南理工大学传热强化与过程节能教育部重点实验室,广东 广州 510640
    2.广东省热能高效储存与利用工程技术 研究中心,广东 广州 510640
    3.华南理工大学珠海现代产业创新研究院,广东 珠海 519175
  • 收稿日期:2022-10-28 修回日期:2023-02-27 出版日期:2023-04-05 发布日期:2023-06-02
  • 通讯作者: 方晓明
  • 作者简介:尹驰(1998—),女,硕士研究生,1848981266@qq.com
  • 基金资助:
    国家重点研发计划项目(2020YFA0210704)

Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation

Chi YIN1(), Zhengguo ZHANG1,2,3, Ziye LING1,2, Xiaoming FANG1,2()   

  1. 1.Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, South China University of Technology, Guangzhou 510640, Guangdong, China
    2.Guangdong Engineering Technology Research Center of Efficient Heat Storage and Application, South China University of Technology, Guangzhou 510640, Guangdong, China
    3.South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, Guangdong, China
  • Received:2022-10-28 Revised:2023-02-27 Online:2023-04-05 Published:2023-06-02
  • Contact: Xiaoming FANG

摘要:

含有相变材料的热界面材料(即相变热界面材料)可借助相变材料的吸热来直接缓解高热通量对芯片造成的冲击。将相变胶囊与导热填料复配引入聚合物基料有望获得可靠性好的相变热界面材料。将石蜡@二氧化硅纳米胶囊与碳纤维复配,制备了一系列含不同质量分数碳纤维和纳米相变胶囊的聚二甲基硅氧烷基相变热界面材料样品,测定了它们的相变特性、热导率和硬度,并将它们分别用于模拟芯片散热来评价其应用性能。结果表明,碳纤维含量的增大致使相变热界面材料样品的热导率和硬度上升,而纳米相变胶囊含量的上升带来相变热界面材料的熔化焓上升及硬度下降,从而都对相变热界面材料的散热性能产生影响。石蜡@二氧化硅纳米胶囊和碳纤维的协同作用致使在所有制备的样品中纳米胶囊含量34%(质量)和碳纤维含量9%(质量)的相变热界面材料取得了最佳散热性能。此外,该相变热界面材料还具有优异的热可靠性,因而具备应用前景。

关键词: 相变热界面材料, 纳米胶囊, 碳纤维, 聚二甲基硅氧烷, 芯片散热

Abstract:

Thermal interface materials containing phase change materials, namely phase change thermal interface materials (PCTIMs), can directly relieve the impact of high heat flux on chip through the heat absorption. Incorporating phase change capsules and thermally conductive fillers into polymeric matrix is expected to develop the PCTIMs with good thermal reliability. In this work, the paraffin@silica nanocapsules were synthesized, followed by combining with carbon fiber, to develop polydimethylsiloxane based PCTIMs. A series of the PCTIMs were fabricated at different loadings of the nanocapsules and carbon fiber, and their phase change characteristics, thermal conductivity and hardness were measured, followed by evaluating their performance for chip heat dissipation. It is found that, the increase in mass fraction of carbon fiber resulted in the increment in both thermal conductivity and hardness for the PCTIMs, while the increase in mass fraction of the paraffin@silica nanocapsules resulted in the increment in latent heat as well as the decrease in hardness for the PCTIMs, all of which influenced the heat dissipation performance of the PCTIMs. The synergistic effects between the paraffin@silica nanocapsules and the carbon fiber make the PCTIM containing 34%(mass) of the nanocapsules and 9%(mass) of the carbon fiber achieve the best heat dissipation performance among all the prepared PCTIM samples. Moreover, the optimal PCTIM also exhibited excellent thermal reliability, thus showing potential in practical applications.

Key words: phase change thermal interface materials, nanocapsules, carbon fiber, polydimethylsiloxane, chip heat dissipation

中图分类号: