化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 554-559.doi: 10.11949/0438-1157.20201576

• 材料化学工程与纳米技术 • 上一篇    下一篇

基于活性碳纤维毡复合吸附剂的储热性能

罗伟莉(),王雯雯,潘权稳(),葛天舒,王如竹   

  1. 上海交通大学机械与动力工程学院,上海 200240
  • 收稿日期:2020-11-03 修回日期:2021-02-01 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 潘权稳 E-mail:luoweili@sjtu.edu.cn;sailote@sjtu.edu.cn
  • 作者简介:罗伟莉(1983—),女,硕士,助理工程师,luoweili@sjtu.edu.cn
  • 基金资助:
    上海市青年科技英才扬帆计划项目(19YF1423100);空调设备及系统运行节能国家重点实验室开放基金项目(ACSKL2018KT1203);上海交通大学“新进青年教师启动计划”项目

Heat storage performance of composite adsorbent with activated carbon fiber

LUO Weili(),WANG Wenwen,PAN Quanwen(),GE Tianshu,WANG Ruzhu   

  1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-11-03 Revised:2021-02-01 Published:2021-06-20 Online:2021-06-20
  • Contact: PAN Quanwen E-mail:luoweili@sjtu.edu.cn;sailote@sjtu.edu.cn

摘要:

研制了一种以活性碳纤维毡为基质、氯化锂(LiCl)为吸湿盐的复合吸附剂,并辅以硅溶胶进行固化成型。该复合吸附剂可用于以水为吸附质的热化学吸附储热系统,并对其微观结构、吸附性能和储热性能进行了表征研究。制备了不同含盐量的复合吸附剂样品,并根据样品的溶液泄漏现象,确定ACFLi30为最佳样品。通过试验测量,获得ACFLi30样品的热导率、孔比表面积、孔体积和孔径等参数。并对多种温湿度工况下的平衡和动态吸附性能进行测试,研究了不同温湿度条件下样品的吸附特性。结果表明样品的吸水量可达1.1 g/g(20℃、75% RH)。利用同步热分析仪测试了复合吸附剂的储热密度,ACFLi30的质量和体积储热密度分别达到1.08 kW·h/kg和588.2 kW·h/m3。与膨胀蛭石和活性氧化铝等基质相比,活性碳纤维毡基质在体积储热密度更具优势。

关键词: 活性碳纤维毡, 吸附剂, 氯化锂, 吸附, 解吸, 储热

Abstract:

In order for efficient chemisorption heat storage system, an activated carbon fiber (ACF)-LiCl composite sorbent was developed while silica sol (SS) was used for shaping. Morphologies records, sorption kinetics and heat storage performance of ACF-LiCl composite sorbent were investigated. Samples with different salt contents were fabricated to store low-temperature thermal heat by impregnation methods. According to the test of the solution leakage phenomenon, the best sample was determined to be ACFLi30. Through the experimental study, thermal conductivity, specific surface area, pore volume and pore diameter were obtained. Sorption kinetics and equilibrium sorption capacity under conditions of multi temperature and relative humidity were studied by utilizing constant temperature and humidity chamber. The water uptake of ACFLi30 sample can be up to 1.1 g/g. Energy storage density was measured by simultaneous thermal analyzer. ACFLi30 sample had the good energy storage performance with 1.08 kW·h/kg mass energy storage density and 588.2 kW·h/m3 volumetric energy storage density. Compared with expanded vermiculite and activated alumina matrix, composite sorbent with ACF matrix has advantage in volumetric energy storage density. As a consequence, ACF-LiCl is promising sorbent in the field of chemisorption heat storage.

Key words: activated carbon fiber, sorbent, lithium chloride, adsorption, desorption, heat storage

中图分类号: 

  • TK 02

图1

复合吸附剂的制备过程"

表1

不同复合吸附剂的含盐量"

样品ACF占比/%SS占比/%LiCl占比/%
ACFLi200.0960.6540.250
ACFLi300.0800.5870.333
ACFLi400.0790.5330.388

表2

样品比表面积、孔体积和孔径"

样品比表面积/(m2/g)孔体积/(cm3/g)孔径/nm
ACF[28]1380.640.551.58
ACFLi30124.220.111.79

表3

样品热导率、热扩散系数和比热容"

样品表观密度/(kg/m3)

热导率/

(W/(m?K))

热扩散系数/(mm2/s)

比热容/

(MJ/(m3?K))

ACF80~850.06940.36300.1912
ACFLi30543.30.56490.18063.1280

图2

ACFLi30的平衡吸附曲线"

图3

ACFLi30的动态吸附曲线"

图4

ACFLi30的脱附过程吸水量和热流曲线"

表4

样品储热密度"

样品质量储热密度/(kW·h/kg)体积储热密度/(kW·h/m3)
ACFLi301.08588.2
EVM-LiCl[29]1.21171.6
EVM-LiCl[30]0.72253
AA-LiCl[20]0.29318.3
1 闫霆, 王文欢, 王程遥. 化学储热技术的研究现状及进展[J]. 化工进展, 2018, 37(12): 4586-4595.
Yan T, Wang W H, Wang C Y. Research situation and progress on chemical heat storage technology [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4586-4595.
2 Palomba V, Frazzica A. Recent advancements in sorption technology for solar thermal energy storage applications [J]. Solar Energy, 2019, 192: 69-105.
3 李琳, 黄宏宇, 邓立生, 等. 低品位能源化学储热材料研究进展[J]. 化工进展, 2020, 39(9): 3608-3616.
Li L, Huang H Y, Deng L S, et al. Research progress of low-grade energy chemical heat storage materials [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3608-3616.
4 Lim K, Kim J, Lee J. Comparative study on adsorbent characteristics for adsorption thermal energy storage system [J]. International Journal of Energy Research, 2019, 43(9): 4281-4294.
5 Zhang Y N, Wang R Z, Li T X. Sorption Thermal Energy Storage [M]// Wang R Z, Zhai X Q. Handbook of Energy Systems in Green Buildings. Berlin: Springer Berlin Heidelberg, 2018: 1109-1161.
6 Sun B C, Chakraborty A. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications [J]. Applied Physics Letters, 2014, 104(20): 201901.
7 Sun B C, Chakraborty A. Thermodynamic frameworks of adsorption kinetics modeling: dynamic water uptakes on silica gel for adsorption cooling applications [J]. Energy, 2015, 84: 296-302.
8 van Alebeek R, Scapino L, Beving M A J M, et al. Investigation of a household-scale open sorption energy storage system based on the zeolite 13X/water reacting pair [J]. Applied Thermal Engineering, 2018, 139: 325-333.
9 Wang R Z, Wang Q B. Adsorption mechanism and improvements of the adsorption equation for adsorption refrigeration pairs [J]. International Journal of Energy Research, 1999, 23(10): 887-898.
10 Zheng X, Wang R Z, Ge T S, et al. Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems [J]. Energy, 2015, 93, Part 1: 88-94.
11 Kohler T, Hinze M, Müller K, et al. Temperature independent description of water adsorption on zeotypes showing a type V adsorption isotherm [J]. Energy, 2017, 135: 227-236.
12 Brancato V, Frazzica A. Characterisation and comparative analysis of zeotype water adsorbents for heat transformation applications [J]. Solar Energy Materials and Solar Cells, 2018, 180: 91-102.
13 Teo H W B, Chakraborty A, Kayal S. Post synthetic modification of MIL-101(Cr) for S-shaped isotherms and fast kinetics with water adsorption [J]. Applied Thermal Engineering, 2017, 120: 453-462.
14 Wang S J, Lee J S, Wahiduzzaman M, et al. A robust large-pore zirconium carboxylate metal-organic framework for energy-efficient water-sorption-driven refrigeration [J]. Nature Energy, 2018, 3(11): 985-993.
15 Cui S Q, Qin M H, Marandi A, et al. Metal-organic frameworks as advanced moisture sorbents for energy-efficient high temperature cooling [J]. Scientific Reports, 2018, 8(1): 15284.
16 Li R Y, Shi Y, Wu M C, et al. Photovoltaic panel cooling by atmospheric water sorption-evaporation cycle [J]. Nature Sustainability, 2020, 3(8): 636-643.
17 Yu N, Wang R Z, Wang L W. Sorption thermal storage for solar energy [J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514.
18 Lehmann C, Kolditz O, Nagel T. Modelling sorption equilibria and kinetics in numerical simulations of dynamic sorption experiments in packed beds of salt/zeolite composites for thermochemical energy storage [J]. International Journal of Heat and Mass Transfer, 2019, 128: 1102-1113.
19 张艳楠, 王如竹, 李廷贤. 蛭石/氯化钙复合吸附剂的吸附特性和储热性能[J]. 化工学报, 2018, 69(1): 363-370.
Zhang Y N, Wang R Z, Li T X. Sorption characteristics and thermal storage performance of expanded vermiculite/CaCl2 composite sorbent [J]. CIESC Journal, 2018, 69(1): 363-370.
20 Zhang Y N, Wang R Z, Li T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage [J]. Energy, 2018, 156: 240-249.
21 刘华, 彭佳杰, 余凯, 等. 活性氧化铝基质新型复合吸附剂的制备和储热性能[J]. 化工学报, 2020, 71(7): 3354-3361.
Liu H, Peng J J, Yu K, et al. Preparation and thermal storage performance of novel composite sorbent with activated alumina matrix [J]. CIESC Journal, 2020, 71(07): 3354-3361.
22 赵惠忠, 程俊峰, 唐祥虎, 等. 多壁碳纳米管嵌入13X/MgCl2复合吸附剂的性能试验[J]. 化工学报, 2017, 68(5): 1860-1865
Zhao H Z, Cheng J F, Tang X H, et al. Performance of multi wall carbon nanotubes embedded 13X/MgCl2 composite adsorbent [J]. CIESC Journal, 2017, 68(5): 1860-1865.
23 Brancato V, Gordeeva L G, Grekova A D, et al. Water adsorption equilibrium and dynamics of LiCl/MWCNT/PVA composite for adsorptive heat storage [J]. Solar Energy Materials and Solar Cells, 2019, 193: 133-140.
24 D'ans P, Courbon E, Permyakova A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application [J]. Journal of Energy Storage, 2019, 25: 100881.
25 Wang J Y, Wang R Z, Wang L W, et al. A high efficient semi-open system for fresh water production from atmosphere [J]. Energy, 2017, 138: 542-551.
26 陈金妹, 张健. ASAP2020比表面积及孔隙分析仪的应用[J]. 分析仪器, 2009, (3): 61-64.
Chen J M, Zhang J. Application of ASAP specific surface area and pore analyzer [J]. Analytical Instrumentation, 2009, (3): 61-64.
27 肖红俊, 于帆, 张欣欣. 瞬态平面热源法测量材料热导率[J]. 北京科技大学学报, 2012, 34(12): 1432-1436.
Xiao H J, Yu F, Zhang X X. Thermal conductivity measurement of materials based on a transient hot-plane method [J]. Journal of University of Science and Technology Beijing, 2012, 34(12): 1432-1436.
28 王佳韵. 基于复合活性炭纤维材料的吸附式空气取水原理与系统[D]. 上海: 上海交通大学, 2018.
Wang J Y. Research on principle and system of atmosphere water harvesting unit based on active carbon fiber composite material [D]. Shanghai: Shanghai Jiao Tong University, 2018.
29 Zhang Y N, Wang R Z, Li T X, et al. Thermochemical characterizations of novel vermiculite-LiCl composite sorbents for low-temperature heat storage [J]. Energies, 2016, 9(10): 854-869.
30 Grekova A D, Gordeeva L G, Aristov Y I. Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage [J]. Applied Thermal Engineering, 2017, 124: 1401-1408.
[1] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[2] 吴俊晔, 葛天舒, 吴宣楠, 代彦军, 王如竹. 基于吸附剂/木浆纤维纸耦合材料的空气净化[J]. 化工学报, 2021, 72(S1): 520-529.
[3] 安美燕, 王洁冰, 徐震原, 王如竹. 基于LiCl溶液太阳能界面蒸发的连续式空气取水[J]. 化工学报, 2021, 72(S1): 70-76.
[4] 温怡静, 张博, 陈晓霏, 赵思洋, 周欣, 黄艳, 李忠. 多孔炭吸附剂的乙烯-乙烷选择性反转机制[J]. 化工学报, 2021, 72(9): 4768-4774.
[5] 演康, 杨颂, 刘守军, 杨超, 樊惠玲, 上官炬. 低阶煤原位制备ZnO基活性炭脱硫剂[J]. 化工学报, 2021, 72(9): 4921-4930.
[6] 彭蕾, 姜岩, 夏如馨. 微生物修复Cr(Ⅵ)污染作用机制及研究进展[J]. 化工学报, 2021, 72(9): 4458-4468.
[7] 马生贵, 田博文, 周雨薇, 陈琳, 江霞, 高涛. 氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究[J]. 化工学报, 2021, 72(9): 4496-4503.
[8] 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795.
[9] 李媛, 张飞飞, 王丽, 杨江峰, 李立博, 李晋平. MIL-101Cr-F/Cl用于N2O的捕集研究[J]. 化工学报, 2021, 72(9): 4759-4767.
[10] 邓超和, 王佳韵, 李金凤, 刘业凤, 王如竹. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409.
[11] 戴琼斌, 刘宏斌, 夏启斌, 周欣, 李忠. 一种新的颗粒炭材料的制备及其高效分离甲烷氮气性能[J]. 化工学报, 2021, 72(8): 4196-4203.
[12] 冯宇, 张鑫, 张曼, 王建成, 阎智锋, 李甫, 费鹏飞, 卢建军, 米杰. 静电纺丝纤维对煤基气体污染物脱除研究进展[J]. 化工学报, 2021, 72(8): 3933-3945.
[13] 韩笑,陈雨亭,苏宝根,鲍宗必,张治国,杨亦文,任其龙,杨启炜. 己烷异构体吸附分离材料研究进展[J]. 化工学报, 2021, 72(7): 3445-3465.
[14] 侯林怡, 王一宁, 张安运, 苏佳天. 新型calix[4]biscrown超分子识别材料制备及其吸附铷和铯性能研究[J]. 化工学报, 2021, 72(6): 3063-3073.
[15] 孙静, 董一霖, 李法齐, 李文翔, 马晓玲, 王文龙. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许志明, 王宗贤, L. S. Kotlyar, K. H. Chung. Syncrude焦化重瓦斯油中甲苯不溶物的分离[J]. CIESC Journal, 2003, 11(6): 747 -750 .
[2] 司徒粤, 胡剑峰, 黄洪, 傅和青, 曾汉维, 陈焕钦. 新型环氧大豆油增韧酚醛树脂的合成与性质[J]. CIESC Journal, 2007, 15(3): 418 -423 .
[3] 屈玲, 佟大明, 吕志平, 萧墉壮, 窦涛. 苯乙烯在MCM-41介孔材料中聚合的研究[J]. CIESC Journal, 2003, 11(6): 677 -680 .
[4] 刘文红, 郭烈锦, 吴铁军, 张西民. 水平长直管内油水两相流流动特性实验研究[J]. CIESC Journal, 2003, 11(5): 491 -496 .
[5] 牟盛静, 苏宏业, 古勇, 褚健. 工业PTA氧化过程的多目标优化[J]. CIESC Journal, 2003, 11(5): 536 -541 .
[6] 闻建平, 王长林, 乔萍. 2-氯-5-氯甲基吡啶在气升环流反应器中的合成研究[J]. CIESC Journal, 2003, 11(5): 608 -610 .
[7] 胡国勤, 陈鸿雁, 蔡建国, 邓修. 用含夹带剂丙酮的超临界CO2快速膨胀法制备灰黄霉素的微细颗粒[J]. CIESC Journal, 2003, 11(4): 403 -407 .
[8] 淮秀兰, 刘登瀛, SHIGERU Koyama, BIDYUT Baran Saha. 对撞流干燥的实验与理论研究[J]. CIESC Journal, 2003, 11(1): 42 -48 .
[9] 罗正鸿, 詹晓力, 陈丰秋, 阳永荣. Mo-Bi系丙烯氨氧化催化剂上氨分解反应动力学的Monte Carlo模拟[J]. CIESC Journal, 2003, 11(1): 110 -114 .
[10] 刘春江, 袁希钢. 利用计算流体力学方法研究精馏塔板上的液相流动[J]. CIESC Journal, 2002, 10(5): 522 -528 .