化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2322-2334.DOI: 10.11949/0438-1157.20230208
李靖(), 沈聪浩, 郭大亮, 李静(), 沙力争(), 童欣
收稿日期:
2023-03-09
修回日期:
2023-05-08
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
李静,沙力争
作者简介:
李靖(2000—),男,硕士研究生,z15087668475@163.com
基金资助:
Jing LI(), Conghao SHEN, Daliang GUO, Jing LI(), Lizheng SHA(), Xin TONG
Received:
2023-03-09
Revised:
2023-05-08
Online:
2023-06-05
Published:
2023-07-27
Contact:
Jing LI, Lizheng SHA
摘要:
基于木质素天然高分子成本低、可再生性、来源丰富、制备工艺简单以及结构可控等优势,将其制备成碳纤维并应用于超级电容器、可充电电池等储能元件,进一步发挥其充放电速度快、能量密度高和循环寿命长等优异的性能,已得到证实及应用。本文系统综述了近年来利用纺丝方法制备的木质素基碳纤维的过程工艺与纤维性能,并基于木质素基碳纤维在结构设计上的多样性,重点总结了不同木质素基碳纤维用作超级电容器和可充电电池电极材料所表现出的差异化电化学性能。此外,对木质素基碳纤维复合材料的发展前景和面临的挑战进行了展望,为木质素基碳纤维复合材料的下一步研究和开发提供思路。
中图分类号:
李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334.
Jing LI, Conghao SHEN, Daliang GUO, Jing LI, Lizheng SHA, Xin TONG. Research progress in the application of lignin-based carbon fiber composite materials in energy storage components[J]. CIESC Journal, 2023, 74(6): 2322-2334.
原料 | 静电纺丝参数 | 木质素纤维直径 | 木质素基碳纤维性能 | 文献 |
---|---|---|---|---|
L | 电压: 20 kV 距离: 15 cm 针规: 20 G | 26.11 μm ± 8 μm | 比表面积: 65.99 m2/g 孔径: 3.75 nm 孔容: 0.06 cm3/g 直径: 21.05 μm ± 9.00 μm | [ |
L/PAN | 电压: 15 kV 流速: 5 μl/min 距离: 20 cm 针规: 22 G | 1920 nm± 150 nm | 抗张强度: 22 MPa ± 1 MPa 拉伸模量: 2.4 GPa ± 0.2 GPa 伸长率: 1.2% ± 0.1% | [ |
L/PEO | 电压: 15 kV 流速: 0.31 ml/h 距离: 15 cm 针规: 22 G | 1030 nm | 直径: 660 nm | [ |
L/PLA | 电压: 7.7 kV 流速: 30 μl/min 距离: 10 cm | 200~600 nm | 比电容: 214.4 F/g 500次充放电循环后保持611 mA·h/g | [ |
L/PVA | 电压: 17 kV 流速: 0.5 ml/h 距离: 20 cm 针规: 0.6 mm | 182 nm ± 27 nm | 直径: 21.05 μm ± 9.00 μm 比表面积: 1419 m2/g 平均孔径: 2.2 nm | [ |
L/PVP/MgO | 电压: 15 kV 流速: 0.2 ml/h 距离: 15 cm | >124 nm | 比表面积:1140 m2/g 孔容: 0.627 cm3/g | [ |
表1 静电纺丝法制备木质素基碳纤维的主要工艺条件及纤维性能
Table 1 The main process conditions and fiber properties of lignin-based carbon fibers prepared by electrospinning
原料 | 静电纺丝参数 | 木质素纤维直径 | 木质素基碳纤维性能 | 文献 |
---|---|---|---|---|
L | 电压: 20 kV 距离: 15 cm 针规: 20 G | 26.11 μm ± 8 μm | 比表面积: 65.99 m2/g 孔径: 3.75 nm 孔容: 0.06 cm3/g 直径: 21.05 μm ± 9.00 μm | [ |
L/PAN | 电压: 15 kV 流速: 5 μl/min 距离: 20 cm 针规: 22 G | 1920 nm± 150 nm | 抗张强度: 22 MPa ± 1 MPa 拉伸模量: 2.4 GPa ± 0.2 GPa 伸长率: 1.2% ± 0.1% | [ |
L/PEO | 电压: 15 kV 流速: 0.31 ml/h 距离: 15 cm 针规: 22 G | 1030 nm | 直径: 660 nm | [ |
L/PLA | 电压: 7.7 kV 流速: 30 μl/min 距离: 10 cm | 200~600 nm | 比电容: 214.4 F/g 500次充放电循环后保持611 mA·h/g | [ |
L/PVA | 电压: 17 kV 流速: 0.5 ml/h 距离: 20 cm 针规: 0.6 mm | 182 nm ± 27 nm | 直径: 21.05 μm ± 9.00 μm 比表面积: 1419 m2/g 平均孔径: 2.2 nm | [ |
L/PVP/MgO | 电压: 15 kV 流速: 0.2 ml/h 距离: 15 cm | >124 nm | 比表面积:1140 m2/g 孔容: 0.627 cm3/g | [ |
图6 不同炭化温度下制得的木质素-PAN碳纳米纤维的微观形貌及其电化学性能[25]
Fig.6 SEM images and electrochemical properties of lignin-PAN carbon nanofibers at different carbonization temperatures[25]
1 | 魏枫. 聚磷腈衍生碳修饰碳纤维电极的制备及其复合结构超级电容器的研究[D]. 赣州: 江西理工大学, 2022. |
Wei F. Preparation of polyphosphazene-derived carbon modified carbon fiber electrode and study on its composite structure supercapacitor[D].Ganzhou: Jiangxi University of Science and Technology, 2022. | |
2 | 雍智鹏. 基于聚合物凝胶电解质赝电容超级电容器的制备与性能研究[D]. 长春: 长春工业大学, 2022. |
Yong Z P. Study on preparation and performance of pseudocapacitor based on polymer gel electrolyte[D].Changchun: Changchun University of Technology, 2022. | |
3 | Chen T Q, Liu Y, Pan L K, et al. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance[J]. Journal of Materials Chemistry A, 2014, 2(12): 4117-4121. |
4 | Kashani H, Chen L Y, Ito Y, et al. Bicontinuous nanotubular graphene-polypyrrole hybrid for high performance flexible supercapacitors[J]. Nano Energy, 2016, 19: 391-400. |
5 | Deng J, Li M M, Wang Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion [J]. Green Chemistry, 2016, 18(18): 4824-4854. |
6 | Espinoza-Acosta J L, Torres-Chávez P I, Olmedo-Martínez J L, et al. Lignin in storage and renewable energy applications: a review[J]. Journal of Energy Chemistry, 2018, 27(5): 1422-1438. |
7 | Wu X Y, Jiang J H, Wang C M, et al. Lignin-derived electrochemical energy materials and systems[J]. Biofuels, Bioproducts and Biorefining, 2020, 14(3): 650-672. |
8 | Zhu M N, Liu H A, Cao Q P, et al. Electrospun lignin-based carbon nanofibers as supercapacitor electrodes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12831-12841. |
9 | Wang S C, Bai J X, Innocent M T, et al. Lignin-based carbon fibers: formation, modification and potential applications[J]. Green Energy & Environment, 2022, 7(4): 578-605. |
10 | Zhou L F, You X Y, Wang L J, et al. Fabrication of graphitized carbon fibers from fusible lignin and their application in supercapacitors[J]. Polymers, 2023, 15(8): 1947. |
11 | Bostan L, Hosseinaei O, Fourné R, et al. Upscaling of lignin precursor melt spinning by bicomponent spinning and its use for carbon fibre production[J]. Philosophical Transactions of the Royal Society A, 2021, 379(2209): 20200334. |
12 | Luo Y X, Qu W D, Cochran E, et al. Enabling high-quality carbon fiber through transforming lignin into an orientable and melt-spinnable polymer[J]. Journal of Cleaner Production, 2021, 307: 127252. |
13 | Jia Z, Lu C X, Liu Y D, et al. Lignin/polyacrylonitrile composite hollow fibers prepared by wet-spinning method[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2838-2842. |
14 | Jin J, Ogale A A. Carbon fibers derived from wet-spinning of equi-component lignin/polyacrylonitrile blends[J]. Journal of Applied Polymer Science, 2018, 135(8): 45903. |
15 | Zhang M, Ogale A A. Effect of temperature and concentration of acetylated-lignin solutions on dry-spinning of carbon fiber precursors[J]. Journal of Applied Polymer Science, 2016, 133(45): 43663 |
16 | Zhang M, Jin J, Ogale A. Carbon fibers from UV-assisted stabilization of lignin-based precursors[J]. Fibers, 2015, 3(4): 184-196. |
17 | Zhang M, Ogale A A. Carbon fibers from dry-spinning of acetylated softwood kraft lignin[J]. Carbon, 2014, 69: 626-629. |
18 | Worarutariyachai T, Chuangchote S. Carbon fibers derived from pure alkali lignin fibers through electrospinning with carbonization[J]. BioResources, 2020, 15(2): 2412-2427. |
19 | Ding R, Wu H C, Thunga M, et al. Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends[J]. Carbon, 2016, 100: 126-136. |
20 | Wang S C, Innocent M T, Wang Q Q, et al. Kraft lignin-based piezoresistive sensors: effect of chemical structure on the microstructure of ultrathin carbon fibers[J]. International Journal of Biological Macromolecules, 2020, 151: 730-739. |
21 | Culebras M, Geaney H, Beaucamp A, et al. Bio-derived carbon nanofibres from lignin as high-performance Li-ion anode materials[J]. ChemSusChem, 2019, 12(19): 4516-4521. |
22 | Wei J Y, Geng S Y, Pitkänen O, et al. Green carbon nanofiber networks for advanced energy storage[J]. ACS Applied Energy Materials, 2020, 3(4): 3530-3540. |
23 | Ma C, Li Z Y, Li J J, et al. Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors[J]. Applied Surface Science, 2018, 456: 568-576. |
24 | Li Y M, Cui D X, Tong Y J, et al. Study on structure and thermal stability properties of lignin during thermostabilization and carbonization[J]. International Journal of Biological Macromolecules, 2013, 62: 663-669. |
25 | Jin J, Yu B J, Shi Z Q, et al. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries[J]. Journal of Power Sources, 2014, 272: 800-807. |
26 | Zhou M, Bahi A, Zhao Y P, et al. Enhancement of charge transport in interconnected lignin-derived carbon fibrous network for flexible battery-supercapacitor hybrid device[J]. Chemical Engineering Journal, 2021, 409: 128214. |
27 | Stojanovska E, Pampal E S, Kilic A, et al. Developing and characterization of lignin-based fibrous nanocarbon electrodes for energy storage devices[J]. Composites Part B: Engineering, 2019, 158: 239-248. |
28 | Jayawickramage R A P, Balkus K J, Ferraris J P. Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors[J]. Nanotechnology, 2019, 30(35): 355402. |
29 | Jayawickramage R A P, Ferraris J P. High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes[J]. Nanotechnology, 2019, 30(15): 155402. |
30 | Liu L L, Niu Z Q, Chen J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations[J]. Chemical Society Reviews, 2016, 45(15): 4340-4363. |
31 | Beaucamp A, Muddasar M, Amiinu I S, et al. Lignin for energy applications—state of the art, life cycle, technoeconomic analysis and future trends[J]. Green Chemistry, 2022, 24(21): 8193-8226. |
32 | Sun S C, Xu Y, Wen J L, et al. Recent advances in lignin-based carbon fibers (LCFs): precursors, fabrications, properties, and applications[J]. Green Chemistry, 2022, 24(15): 5709-5738. |
33 | Yi Y J, Zhuang J S, Liu C, et al. Emerging lignin-based materials in electrochemical energy systems[J]. Energies, 2022, 15(24): 9450. |
34 | Hu Z R, Li D D, Kim T H, et al. Lignin-based/polypyrrole carbon nanofiber electrode with enhanced electrochemical properties by electrospun method[J]. Frontiers in Chemistry, 2022, 10: 841956. |
35 | Qu W D, Hu P Y, Liu J, et al. Lignin-based carbon fiber: a renewable and low-cost substitute towards featured fiber-shaped pseudocapacitor electrodes[J]. Journal of Cleaner Production, 2022, 343: 131030. |
36 | Thielke M W, Lopez Guzman S, Victoria Tafoya J P, et al. Full lignin-derived electrospun carbon materials as electrodes for supercapacitors[J]. Frontiers in Materials, 2022, 9: 859872. |
37 | Wang Q Q, Ma W J, Yin E Q, et al. Melt spinning of low-cost activated carbon fiber with a tunable pore structure for high-performance flexible supercapacitors[J]. ACS Applied Energy Materials, 2020, 3(9): 9360-9368. |
38 | Fu F B, Yang D J, Fan Y K, et al. Nitrogen-rich accordion-like lignin porous carbon via confined self-assembly template and in situ mild activation strategy for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2022, 628: 90-99. |
39 | Jian W, Zhang W, Wei X, et al. Engineering pore nanostructure of carbon cathodes for zinc ion hybrid supercapacitors[J]. Advanced Functional Materials, 2022, 32(49): 2209914. |
40 | Hong R T, Zhang Z L, Pan S R, et al. Construction of PVA-lignosulfonate hydrogels for improved mechanical performances and all-in-one flexible supercapacitors[J]. International Journal of Biological Macromolecules, 2023, 225: 1494-1504. |
41 | Du B Y, Wang X, Chai L F, et al. Fabricating lignin-based carbon nanofibers as versatile supercapacitors from food wastes[J]. International Journal of Biological Macromolecules, 2022, 194: 632-643. |
42 | Du B Y, Chai L F, Zhu H W, et al. Effective fractionation strategy of sugarcane bagasse lignin to fabricate quality lignin-based carbon nanofibers supercapacitors[J]. International Journal of Biological Macromolecules, 2021, 184: 604-617. |
43 | Du B Y, Zhu H W, Chai L F, et al. Effect of lignin structure in different biomass resources on the performance of lignin-based carbon nanofibers as supercapacitor electrode[J]. Industrial Crops and Products, 2021, 170: 113745. |
44 | Cao Q P, Zhu M N, Chen J A, et al. Novel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1210-1221. |
45 | Cao Q P, Zhang Y C, Chen J A, et al. Electrospun biomass based carbon nanofibers as high-performance supercapacitors[J]. Industrial Crops and Products, 2020, 148: 112181. |
46 | Zheng H, Cao Q P, Zhu M N, et al. Biomass-based flexible nanoscale carbon fibers: effects of chemical structure on energy storage properties[J]. Journal of Materials Chemistry A, 2021, 9(16): 10120-10134. |
47 | Han X, Wei Q L, Su Y Y, et al. Molecular modification of lignin-based carbon materials: influence of supramolecular bonds on the properties[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 1969-1983. |
48 | Yang J Q, Wang Y X, Luo J L, et al. Facile preparation of self-standing hierarchical porous nitrogen-doped carbon fibers for supercapacitors from plant protein-lignin electrospun fibers[J]. ACS Omega, 2018, 3(4): 4647-4656. |
49 | Thongsai N, Hrimchum K, Aussawasathien D. Carbon fiber mat from palm-kernel-shell lignin/polyacrylonitrile as intrinsic-doping electrode in supercapacitor[J]. Sustainable Materials and Technologies, 2021, 30: e00341. |
50 | You X Y, Duan J L, Koda K, et al. Preparation of electric double layer capacitors (EDLCs) from two types of electrospun lignin fibers[J]. Holzforschung, 2016, 70: 661-671. |
51 | Lei D Y, Li X D, Seo M K, et al. NiCo2O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors[J]. Polymer, 2017, 132: 31-40. |
52 | Youe W J, Kim S J, Lee S M, et al. MnO2-deposited lignin-based carbon nanofiber mats for application as electrodes in symmetric pseudocapacitors[J]. International Journal of Biological Macromolecules, 2018, 112: 943-950. |
53 | Guo C Y, Ma H T, Zhang Q T, et al. Nano MnO2 radially grown on lignin-based carbon fiber by one-step solution reaction for supercapacitors with high performance[J]. Nanomaterials, 2020, 10(3): 594. |
54 | Yu B M, Gele A R, Wang L P. Iron oxide/lignin-based hollow carbon nanofibers nanocomposite as an application electrode materials for supercapacitors[J]. International Journal of Biological Macromolecules, 2018, 118: 478-484. |
55 | Yun S I, Kim S H, Kim D W, et al. Facile preparation and capacitive properties of low-cost carbon nanofibers with ZnO derived from lignin and pitch as supercapacitor electrodes[J]. Carbon, 2019, 149: 637-645. |
56 | Shen H, Gele A R. Facile synthesis of N-doped lignin-based carbon nanofibers decorated with iron oxides for flexible supercapacitor electrodes[J]. Inorganic Chemistry Communications, 2021, 128: 108607. |
57 | Wang L P, Aorigele, Sun Y X. Preparation of iron oxide particle-decorated lignin-based carbon nanofibers as electrode material for pseudocapacitor[J]. Journal of Wood Chemistry and Technology, 2017, 37(6): 423-432. |
58 | Schlee P, Hosseinaei O, Baker D, et al. From waste to wealth: from kraft lignin to free-standing supercapacitors[J]. Carbon, 2019, 145: 470-480. |
59 | García-Mateos F J, Ruiz-Rosas R, María Rosas J, et al. Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes[J]. Separation and Purification Technology, 2020, 241: 116724. |
60 | Jeong J H, Lee Y H, Kim B H. Relationship between microstructure and electrochemical properties of 2lignin-derived carbon nanofibers prepared by thermal treatment[J]. Synthetic Metals, 2020, 260: 116287. |
61 | Jung H Y, Lee J S, Han H T, et al. Lignin-based materials for sustainable rechargeable batteries[J]. Polymers, 2022, 14(4): 673. |
62 | Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
63 | Tenhaeff W E, Rios O, More K, et al. Highly robust lithium ion battery anodes from lignin: an abundant, renewable, and low-cost material[J]. Advanced Functional Materials, 2014, 24(1): 86-94. |
64 | Yuan J M, Wang K, Su T T, et al. Multifunctional organic corncob lignin and inorganic lithium nitride composite films as artificial protective layer to achieve high-performance Li metal anodes[J]. Industrial Crops and Products, 2023, 193: 116127. |
65 | Wang S X, Yang L P, Stubbs L P, et al. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12275-12282. |
66 | Culebras M, Collins G A, Beaucamp A, et al. Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials[J]. Engineered Science, 2022, 17, 195-203. |
67 | Peuvot K, Hosseinaei O, Tomani P, et al. Lignin based electrospun carbon fiber anode for sodium ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(10): A1984-A1990. |
68 | Jia H, Sun N, Dirican M, et al. Electrospun kraft lignin/cellulose acetate-derived nanocarbon network as an anode for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44368-44375. |
69 | Zhang Y, Zhu Y Y, Zhang J Z, et al. Optimizing the crystallite structure of lignin-based nanospheres by resinification for high-performance sodium-ion battery anodes[J]. Energy Technology, 2020, 8(1): 1900694. |
70 | Wang X, Li X, Lu Z, et al. Constructing porous lignin-based carbon nanofiber anodes with flexibility for high-performance lithium/sodium-ion batteries[J]. Materials Today Sustainability, 2022, 20: 100234. |
[1] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[4] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[5] | 肖忠良, 尹碧露, 宋刘斌, 匡尹杰, 赵亭亭, 刘成, 袁荣耀. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
[6] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[7] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[8] | 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689. |
[9] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[10] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[11] | 钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380. |
[12] | 顾仁杰, 张加威, 靳雪阳, 文利雄. 微撞击流反应器制备镍钴复合氢氧化物超级电容器材料及其性能研究[J]. 化工学报, 2022, 73(8): 3749-3757. |
[13] | 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239. |
[14] | 刘学安, 汤丽怡, 覃健, 唐大江, 童张法, 曲慧颖. 热解Ni/Co-ZIF-8制备碳纳米管桥连多孔碳及其在超级电容器中的应用[J]. 化工学报, 2022, 73(7): 3287-3297. |
[15] | 王江丽, 薛敏, 赵承科, 岳凤霞. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 565
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 344
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||