化工学报 ›› 2024, Vol. 75 ›› Issue (2): 616-625.DOI: 10.11949/0438-1157.20231210
刘克清1(), 崔燕2, 于琼2, 陈立坤2, 郑永超2, 乔智威1(), 郑禾2()
收稿日期:
2023-11-21
修回日期:
2024-02-06
出版日期:
2024-02-25
发布日期:
2024-04-10
通讯作者:
乔智威,郑禾
作者简介:
刘克清(1998—),男,硕士研究生,liukeqing@e.gzhu.edu.cn
基金资助:
Keqing LIU1(), Yan CUI2, Qiong YU2, Likun CHEN2, Yongchao ZHENG2, Zhiwei QIAO1(), He ZHENG2()
Received:
2023-11-21
Revised:
2024-02-06
Online:
2024-02-25
Published:
2024-04-10
Contact:
Zhiwei QIAO, He ZHENG
摘要:
通过后合成修饰方法制备了一系列不同氨基酸(amino acid,AA)接枝的MOF-808-AA催化剂,研究了孔结构和孔道微环境对神经毒剂模拟剂催化性能的影响,探索了MOF-808和MOF-808-AA的模拟酶性质。结果表明:氨基酸修饰造成MOF-808的孔结构和孔道微环境发生变化,从而影响催化剂对模拟剂的催化性能。其中,氨基酸侧链提供的氢键以及疏水作用使得MOF-808-AA对模拟剂的亲和力有所提升;氨基酸接枝后,MOF-808原始结构中的活性金属位点数量减少造成了降解速率的降低;氨基酸侧链官能团的酸碱性会导致孔道微环境差异,当侧链为氨基等碱性官能团时,催化效率明显提高,而当侧链为羧基时,催化效率则明显降低。
中图分类号:
刘克清, 崔燕, 于琼, 陈立坤, 郑永超, 乔智威, 郑禾. 氨基酸修饰的MOF-808催化降解神经毒剂的模拟酶性质研究[J]. 化工学报, 2024, 75(2): 616-625.
Keqing LIU, Yan CUI, Qiong YU, Likun CHEN, Yongchao ZHENG, Zhiwei QIAO, He ZHENG. Study on the mimic enzymatic performance of amino acid modified MOF-808 for nerve agents decontamination[J]. CIESC Journal, 2024, 75(2): 616-625.
材料 | 结构式 |
---|---|
MOF-808 | Zr6O4(OH)4(BTC)2(HCOO)3.72(OH)2.28 |
MOF-808-Phe | Zr6O4(OH)4(BTC)2(HCOO)1.38(Phe)3.30(OH)1.32 |
MOF-808-Dap | Zr6O4(OH)4(BTC)2(HCOO)1.74(Dap)2.10(OH)2.16 |
MOF-808-His | Zr6O4(OH)4(BTC)2(HCOO)0.90(His)2.88(OH)2.22 |
MOF-808-Ser | Zr6O4(OH)4(BTC)2(HCOO)1.26(Ser)2.76(OH)1.98 |
MOF-808-Asp | Zr6O4(OH)4(BTC)2(HCOO)0.42(Asp)4.02(OH)1.56 |
表1 MOF-808和MOF-808-AA的结构式
Table 1 Structural formulas of MOF-808 and MOF-808-AA
材料 | 结构式 |
---|---|
MOF-808 | Zr6O4(OH)4(BTC)2(HCOO)3.72(OH)2.28 |
MOF-808-Phe | Zr6O4(OH)4(BTC)2(HCOO)1.38(Phe)3.30(OH)1.32 |
MOF-808-Dap | Zr6O4(OH)4(BTC)2(HCOO)1.74(Dap)2.10(OH)2.16 |
MOF-808-His | Zr6O4(OH)4(BTC)2(HCOO)0.90(His)2.88(OH)2.22 |
MOF-808-Ser | Zr6O4(OH)4(BTC)2(HCOO)1.26(Ser)2.76(OH)1.98 |
MOF-808-Asp | Zr6O4(OH)4(BTC)2(HCOO)0.42(Asp)4.02(OH)1.56 |
材料 | BET比表面积/(m2·g-1) | 孔体积/ (cm3·g-1) | 平均孔径/nm |
---|---|---|---|
MOF-808 | 1649 | 0.649 | 1.78 |
MOF-808-Ser | 1498 | 0.616 | 1.59 |
MOF-808-Phe | 1249 | 0.515 | 1.45 |
MOF-808-Dap | 1133 | 0.501 | 1.33 |
MOF-808-His | 1039 | 0.454 | 1.35 |
MOF-808-Asp | 928 | 0.434 | 1.26 |
表2 MOF-808和MOF-808-AA的孔结构参数
Table 2 Pore structure parameters of MOF-808 and MOF-808-AA
材料 | BET比表面积/(m2·g-1) | 孔体积/ (cm3·g-1) | 平均孔径/nm |
---|---|---|---|
MOF-808 | 1649 | 0.649 | 1.78 |
MOF-808-Ser | 1498 | 0.616 | 1.59 |
MOF-808-Phe | 1249 | 0.515 | 1.45 |
MOF-808-Dap | 1133 | 0.501 | 1.33 |
MOF-808-His | 1039 | 0.454 | 1.35 |
MOF-808-Asp | 928 | 0.434 | 1.26 |
材料 | 30 min降解率/% | 半衰期/min |
---|---|---|
MOF-808 | 69.1 | 11.25 |
MOF-808-Dap | 83.8 | 5.94 |
MOF-808-Ser | 77.5 | 6.82 |
MOF-808-His | 76.3 | 7.29 |
MOF-808-Phe | 76.1 | 10.71 |
MOF-808-Asp | 51.4 | 26.76 |
表3 MOF-808和MOF-808-AA对DEPPT降解效果
Table 3 Degradations of DEPPT by MOF-808 and MOF-808-AA
材料 | 30 min降解率/% | 半衰期/min |
---|---|---|
MOF-808 | 69.1 | 11.25 |
MOF-808-Dap | 83.8 | 5.94 |
MOF-808-Ser | 77.5 | 6.82 |
MOF-808-His | 76.3 | 7.29 |
MOF-808-Phe | 76.1 | 10.71 |
MOF-808-Asp | 51.4 | 26.76 |
材料 | Km/(mol·L-1) | Kcat/s-1 | (Kcat/Km)/ (ml·mol-1·s-1) |
---|---|---|---|
MOF-808 | 141.6 | 0.149 | 1.052 |
MOF-808-Phe | 54.9 | 0.064 | 1.166 |
MOF-808-His | 85.2 | 0.106 | 1.244 |
MOF-808-Ser | 59.4 | 0.080 | 1.347 |
MOF-808-Asp | 88.5 | 0.051 | 0.576 |
MOF-808-Dap | 72.4 | 0.103 | 1.423 |
表4 MOF-808和MOF-808-AA活性参数
Table 4 Activity parameters of MOF-808 and MOF-808-AA
材料 | Km/(mol·L-1) | Kcat/s-1 | (Kcat/Km)/ (ml·mol-1·s-1) |
---|---|---|---|
MOF-808 | 141.6 | 0.149 | 1.052 |
MOF-808-Phe | 54.9 | 0.064 | 1.166 |
MOF-808-His | 85.2 | 0.106 | 1.244 |
MOF-808-Ser | 59.4 | 0.080 | 1.347 |
MOF-808-Asp | 88.5 | 0.051 | 0.576 |
MOF-808-Dap | 72.4 | 0.103 | 1.423 |
1 | Raushel F M. Catalytic detoxification[J]. Nature, 2011, 469: 310-311. |
2 | Herrmann H W, Henins I, Park J, et al. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)[J]. Physics of Plasmas, 1999, 6(5): 2284-2289. |
3 | Hulse E J, Haslam J D, Emmett S R, et al. Organophosphorus nerve agent poisoning: managing the poisoned patient[J]. British Journal of Anaesthesia, 2019, 123(4): 457-463. |
4 | Ciottone G R. Toxidrome recognition in chemical-weapons attacks[J]. The New England Journal of Medicine, 2018, 378(17): 1611-1620. |
5 | Bigley A N, Raushel F M. Catalytic mechanisms for phosphotriesterases[J]. Biochimica et Biophysica Acta - Proteins and Proteomics, 2013, 1834(1): 443-453. |
6 | Prokop Z, Oplustil F, DeFrank J, et al. Enzymes fight chemical weapons[J]. Biotechnology Journal, 2006, 1(12): 1370-1380. |
7 | 张涛, 张源齐, 王济农, 等. 316L不锈钢表面氧化物复合涂层的制备和阻氢性能研究[J].广州大学学报(自然科学版), 2023, 22(6): 69-76. |
Zhang T, Zhang Y Q, Wang J N, et al. Preparation and hydrogen barrier properties of oxide composite coatings on 316L stainless steel surfaces[J]. Journal of Guangzhou University (Natural Science Edition), 2023, 22(6): 69-76. | |
8 | 赵美花, 温靖经, 严明乐, 等. 不同结构导向剂制备WO3及其光催化降解土霉素[J]. 广州大学学报(自然科学版), 2023, 22(3): 19-25. |
Zhao M H, Wen J J, Yan M L, et al. Preparation of WO3 with different structure guiding agents and its photocatalytic degradation of oxytetracycline[J]. Journal of Guangzhou University (Natural Science Edition), 2023, 22(3): 19-25. | |
9 | Carlsson H, Haukka M, Nordlander E. Structural and functional models of the active site of zinc phosphotriesterase[J]. Inorganic Chemistry, 2004, 43(18): 5681-5687. |
10 | Vanhooke J L, Benning M M, Raushel F M, et al. Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate[J]. Biochemistry, 1996, 35(19): 6020-6025. |
11 | Zhang J W, Li X G, White J, et al. Effects of surface and morphological properties of zeolite on impedance spectroscopy-based sensing performance[J]. Sensors, 2012, 12(10): 13284-13294. |
12 | Guo Q Z, Mei B, Zhou S X, et al. Synthesis, characterization and application of magnetic-zirconia nanocomposites[J]. Journal of Non-Crystalline Solids, 2009, 355(16/17): 922-925. |
13 | Eddaoudi M, Moler D B, Li H L, et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks[J]. Accounts of Chemical Research, 2001, 34(4): 319-330. |
14 | Kitagawa S, Kitaura R, Noro S I. Functional porous coordination polymers[J]. Angewandte Chemie International Edition, 2004, 43(18): 2334-2375. |
15 | Kuppler R J, Timmons D J, Fang Q R, et al. Potential applications of metal-organic frameworks[J]. Coordination Chemistry Reviews, 2009, 253(23/24): 3042-3066. |
16 | 莫滨宇, 张雅馨, 刘国振, 等. 面向一/二价离子分离的金属有机骨架膜研究进展[J].化工学报, DOI: 10.11949/0438-1157.20231219 . |
Mo B Y, Zhang Y X, Liu G Z, et al. Recent progress of metal-organic framework membranes for mono/divalent ions separation[J]. CIESC Journal, DOI:10.11949/0438-1157.20231219 . | |
17 | Comito R J, Fritzsching K J, Sundell B J, et al. Single-site heterogeneous catalysts for olefin polymerization enabled by cation exchange in a metal-organic framework[J]. Journal of the American Chemical Society, 2016, 138(32): 10232-10237. |
18 | Lee J, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews, 2009, 38(5): 1450-1459. |
19 | Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. |
20 | Mason J A, Veenstra M, Long J R. Evaluating metal-organic frameworks for natural gas storage[J]. Chemical Science, 2014, 5(1): 32-51. |
21 | Adil K, Belmabkhout Y, Pillai R S, et al. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship[J]. Chemical Society Reviews, 2017, 46(11): 3402-3430. |
22 | Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932. |
23 | Garibay S J, Farha O K, DeCoste J B. Single-component frameworks for heterogeneous catalytic hydrolysis of organophosphorous compounds in pure water[J]. Chemical Communications, 2019, 55(49): 7005-7008. |
24 | Troya D. Reaction mechanism of nerve-agent decomposition with Zr-based metal organic frameworks[J]. The Journal of Physical Chemistry C, 2016, 120(51): 29312-29323. |
25 | Wang H, Mahle J J, Tovar T M, et al. Solid-phase detoxification of chemical warfare agents using zirconium-based metal organic frameworks and the moisture effects: analyze via digestion[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 21109-21116. |
26 | Hoskin F C, Roush A H. Hydrolysis of nerve gas by squid-type diisopropyl phosphorofluoridate hydrolyzing enzyme on agarose resin[J]. Science, 1982, 215(4537): 1255-1257. |
27 | Katz M J, Mondloch J E, Totten R K, et al. Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants[J]. Angewandte Chemie (International Ed. in English), 2014, 53(2): 497-501. |
28 | Moon S Y, Liu Y Y, Hupp J T, et al. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework[J]. Angewandte Chemie International Edition, 2015, 54(23): 6795-6799. |
29 | 张鑫琦, 张宸, 张舵咏, 等. 高选择性PEI@MOF-808 吸附剂在潮湿烟气中的碳捕集性能研究[J]. 化工学报, 2023, 74(10): 4330-4342. |
Zhang X Q, Zhang C, Zhang D Y, et al. Study on the carbon capture performance of highly selective PEI@MOF-808 adsorbent in humid flue gas[J]. CIESC Journal, 2023, 74(10): 4330-4342. | |
30 | Zhao J J, Lee D T, Yaga R W, et al. Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs[J]. Angewandte Chemie International Edition, 2016, 55(42): 13224-13228. |
31 | Katz M J, Moon S Y, Mondloch J E, et al. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2 [J]. Chemical Science, 2015, 6(4): 2286-2291. |
32 | Islamoglu T, Ortuño M A, Proussaloglou E, et al. Presence versus proximity: the role of pendant amines in the catalytic hydrolysis of a nerve agent simulant[J]. Angewandte Chemie International Edition, 2018, 57(7): 1949-1953. |
33 | Bischoff R, Schlüter H. Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications[J]. Journal of Proteomics, 2012, 75(8): 2275-2296. |
34 | 梅佩, 张媛媛, 冯霄. 氨基酸功能化晶态多孔聚合物的研究进展[J]. 化学学报, 2020, 78(10): 1041-1053. |
Mei P, Zhang Y Y, Feng X. Amino acid functionalized crystalline porous polymers[J]. Acta Chimica Sinica, 2020, 78(10): 1041-1053. | |
35 | Zhu Z L, Zhang P X, Li B, et al. Chemical immobilization of amino acids into robust metal-organic framework for efficient SO2 removal[J]. AIChE Journal, 2021, 67(9): e17300. |
36 | Cirujano F G, Martín N, Fu G X, et al. Cooperative acid-base bifunctional ordered porous solids in sequential multi-step reactions: MOF vs. mesoporous silica[J]. Catalysis Science & Technology, 2020, 10(6): 1796-1802. |
37 | Lyu H, Chen O I F, Hanikel N, et al. Carbon dioxide capture chemistry of amino acid functionalized metal-organic frameworks in humid flue gas[J]. Journal of the American Chemical Society, 2022, 144(5): 2387-2396. |
38 | Palomba J M, Harvey S P, Kalaj M, et al. High-throughput screening of MOFs for breakdown of V-series nerve agents[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 14672-14677. |
39 | Li B, Chen D M, Wang J Q, et al. MOFzyme: intrinsic protease-like activity of Cu-MOF[J]. Scientific Reports, 2014, 4: 6759. |
40 | Liu D H, Yang P, Wang F Q, et al. Study on performance of mimic uricase and its application in enzyme-free analysis[J]. Analytical and Bioanalytical Chemistry, 2021, 413(26): 6571-6580. |
41 | Furukawa H, Gándara F, Zhang Y B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. |
42 | Wang X B, Xu Z Z, Li L, et al. NO2 removal under ambient conditions by nanoporous multivariate zirconium-based metal-organic framework[J]. ACS Applied Nano Materials, 2020, 3(11): 11442-11454. |
43 | Biapo U, Keller V, Bazin P, et al. Investigation of interactions between organophosphorus compounds and TiO2 modified microcantilevers for molecule detection in air[J]. Materials Advances, 2022, 3(8): 3600-3609. |
44 | Kirlikovali K O, Chen Z J, Islamoglu T, et al. Zirconium-based metal-organic frameworks for the catalytic hydrolysis of organophosphorus nerve agents[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 14702-14720. |
[1] | 周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510. |
[2] | 郭杰, 张帆, 谢世玉, 由立新, 孙亚光. 氮杂环卡宾-钯功能化的配位聚合物(NHC-Pd@Zn-L):合成、表征及催化Suzuki-Miyaura交叉偶联反应[J]. 化工学报, 2022, 73(8): 3608-3614. |
[3] | 杨诗, 蔡阳, 李长平, 李雪辉. 磷钨酸负载锆基金属有机骨架PTA@MOF-808的制备及其吸附脱硫性能[J]. 化工学报, 2021, 72(3): 1722-1731. |
[4] | 刘佳鑫, 徐宇, 花儿. 异辛基乙二胺-酰基丙氨酸型质子化离子液体的分子间氢键相互作用[J]. 化工学报, 2020, 71(S1): 15-22. |
[5] | 高虎涛, 申晓林, 孙新晓, 王佳, 袁其朋. 代谢工程调控策略在生物合成氨基酸及其衍生物中的应用[J]. 化工学报, 2020, 71(9): 4058-4070. |
[6] | 原野, 王明, 周云琪, 王志, 王纪孝. 金属有机框架孔径调控进展[J]. 化工学报, 2020, 71(2): 429-450. |
[7] | 徐超, 薛誉, 陈虹月, 胡燚. 手性脯氨酸类离子液体化学修饰猪胰脂肪酶催化性能研究[J]. 化工学报, 2019, 70(6): 2221-2228. |
[8] | 鞠佳, 聂飞, 段志军, 贺高红. 亲和膜配基的结构和密度对胆红素吸附的影响[J]. 化工学报, 2013, 64(1): 303-310. |
[9] | 郭建峰, 高保娇, 王蕊欣. 接枝微粒材料PMAA/SiO2对碱性氨基酸(精氨酸)的吸附性能 [J]. 化工学报, 2010, 61(6): 1469-1474. |
[10] | 王渊涛, 方诚刚, 张锋, 吴有庭, 耿皎, 张志炳. 氨基酸离子液体-MDEA混合水溶液的CO2吸收性能 [J]. 化工学报, 2009, 60(11): 2781-2786. |
[11] | 卫云路,郑 成,宁正祥. 表面活性剂作为发酵促进剂的国内外研究进展 [J]. CIESC Journal, 2008, 27(7): 983-. |
[12] | 刘清芝, 胡仰栋, 杨登峰, 刘光增. 氨基酸扩散系数的分子动力学模拟 [J]. 化工学报, 2007, 58(4): 842-847. |
[13] | 梅艳珍,何冰芳,欧阳平凯. L-N-氨甲酰水解酶研究进展 [J]. CIESC Journal, 2007, 26(4): 485-. |
[14] | 朱春英;马友光;赵长伟;何明霞;马沛生;余国琮. 氨基酸在水溶液中的扩散系数 [J]. CIESC Journal, 2005, 56(2): 243-245. |
[15] | 赵长伟,马沛生,夏淑倩. 293.15K到333.15K温度下一些氨基酸及其相应基团水溶液中的偏摩尔体积研究[J]. CIESC Journal, 2004, 12(4): 521-526. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||