化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2594-2603.DOI: 10.11949/0438-1157.20240098
马林峰(), 欧爱彤, 李志远, 李垚, 刘润泽, 吴晓乐, 徐景涛(
)
收稿日期:
2024-01-22
修回日期:
2024-04-16
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
徐景涛
作者简介:
马林峰(1999—),男,硕士研究生,15650560960@163.com
基金资助:
Linfeng MA(), Aitong OU, Zhiyuan LI, Yao LI, Runze LIU, Xiaole WU, Jingtao XU(
)
Received:
2024-01-22
Revised:
2024-04-16
Online:
2024-07-25
Published:
2024-08-09
Contact:
Jingtao XU
摘要:
以废弃芦苇为原料、硫化钠(Na2S)为改性剂,制备了对Pb2+、Cd2+、Zn2+具有高效吸附性能的Na2S改性生物炭(BCS)。通过扫描电镜-能谱(SEM-EDS)、红外光谱(FTIR)、元素分析等手段对改性前后的生物炭进行了表征。结果显示,Na2S改性能够为生物炭引入多种含硫官能团,提升孔体积并增加比表面积。Langmuir模型拟合结果表明,随着改性剂Na2S溶液浓度的增加,BCS对重金属离子的吸附能力得到提升。在pH为2.0~6.0的范围内,BCS对重金属离子的吸附能力随pH增加逐步增强。在pH=6.0时,BCS对Pb2+、Cd2+、Zn2+的最大吸附量分别为494.99、131.14、94.89 mg/g。根据动力学实验结果可知,BCS对重金属离子的吸附行为符合伪二级动力学模型。吸附机理主要包括表面官能团的络合、离子交换和静电吸附。本研究可为废弃物的再利用以及废水中的重金属的高效去除提供一种环境友好且可行的解决方案。
中图分类号:
马林峰, 欧爱彤, 李志远, 李垚, 刘润泽, 吴晓乐, 徐景涛. Na2S改性生物炭高效吸附重金属离子:制备及吸附机理[J]. 化工学报, 2024, 75(7): 2594-2603.
Linfeng MA, Aitong OU, Zhiyuan LI, Yao LI, Runze LIU, Xiaole WU, Jingtao XU. High-efficiency adsorption of heavy metal ions by Na2S modified biochar: preparation and adsorption mechanism[J]. CIESC Journal, 2024, 75(7): 2594-2603.
生物炭 | 元素含量/% | 原子比 | 灰分/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | Na | H/C | O/C | (N+O)/C | ||
BC | 62.44 | 3.44 | 30.15 | 3.18 | — | — | 0.06 | 0.48 | 0.53 | 11.82 |
BCS(0.1) | 63.08 | 2.48 | 29.15 | 2.97 | 0.89 | 1.43 | 0.05 | 0.46 | 0.51 | 12.53 |
BCS(0.3) | 64.58 | 3.58 | 28.94 | 2.48 | 2.47 | 5.11 | 0.04 | 0.45 | 0.49 | 13.35 |
BCS | 58.11 | 3.15 | 26.52 | 2.33 | 3.46 | 6.44 | 0.05 | 0.46 | 0.50 | 14.27 |
表1 改性剂浓度对生物炭中元素含量的影响
Table 1 Effect of modifier concentration on elemental content in biochar
生物炭 | 元素含量/% | 原子比 | 灰分/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | Na | H/C | O/C | (N+O)/C | ||
BC | 62.44 | 3.44 | 30.15 | 3.18 | — | — | 0.06 | 0.48 | 0.53 | 11.82 |
BCS(0.1) | 63.08 | 2.48 | 29.15 | 2.97 | 0.89 | 1.43 | 0.05 | 0.46 | 0.51 | 12.53 |
BCS(0.3) | 64.58 | 3.58 | 28.94 | 2.48 | 2.47 | 5.11 | 0.04 | 0.45 | 0.49 | 13.35 |
BCS | 58.11 | 3.15 | 26.52 | 2.33 | 3.46 | 6.44 | 0.05 | 0.46 | 0.50 | 14.27 |
生物炭 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 平均孔径/nm |
---|---|---|---|
BC | 46.16 | 0.049 | 2.16 |
BCS(0.1) | 49.34 | 0.066 | 2.74 |
BCS(0.3) | 52.13 | 0.089 | 3.17 |
BCS | 54.45 | 0.102 | 3.74 |
表2 改性剂浓度对改性生物炭孔结构的影响
Table 2 Effect of modifier concentration on the pore structure of modified biochar
生物炭 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 平均孔径/nm |
---|---|---|---|
BC | 46.16 | 0.049 | 2.16 |
BCS(0.1) | 49.34 | 0.066 | 2.74 |
BCS(0.3) | 52.13 | 0.089 | 3.17 |
BCS | 54.45 | 0.102 | 3.74 |
图3 不同浓度Na2S改性对生物炭吸附Pb2+、Cd2+、Zn2+性能的影响
Fig.3 Effect of different concentrations of Na2S modified biochar on adsorption performance of Pb2+, Cd2+ and Zn2+ by biochar
重金属离子 | 最大吸附量/(mg/g) | |||
---|---|---|---|---|
BC | BCS(0.1) | BCS(0.3) | BCS | |
Pb2+ | 19.69 | 464.11 | 477.25 | 494.99 |
Cd2+ | 15.63 | 99.94 | 121.45 | 131.14 |
Zn2+ | 13.98 | 79.29 | 81.03 | 94.89 |
表3 不同浓度Na2S改性生物炭对Pb2+、Cd2+、Zn2+的最大吸附量的影响
Table 3 Effect of different concentrations of Na2S modified biochar on the maximum adsorption capacity of Pb2+, Cd2+ and Zn2+
重金属离子 | 最大吸附量/(mg/g) | |||
---|---|---|---|---|
BC | BCS(0.1) | BCS(0.3) | BCS | |
Pb2+ | 19.69 | 464.11 | 477.25 | 494.99 |
Cd2+ | 15.63 | 99.94 | 121.45 | 131.14 |
Zn2+ | 13.98 | 79.29 | 81.03 | 94.89 |
重金属离子 | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
KL/(L/mg) | Qm/(mg/g) | R2 | KF | 1/n | R2 | |
Pb2+ | 0.05 | 494.99 | 0.96 | 10.19 | 0.29 | 0.75 |
Cd2+ | 0.45 | 131.14 | 0.95 | 4.55 | 0.33 | 0.73 |
Zn2+ | 1.49 | 94.89 | 0.93 | 5.33 | 0.14 | 0.72 |
表4 BCS对Pb2+、Cd2+、Zn2+的等温模型拟合参数
Table 4 Isothermal model fitting parameters of BCS for Pb2+, Cd2+, Zn2+
重金属离子 | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
KL/(L/mg) | Qm/(mg/g) | R2 | KF | 1/n | R2 | |
Pb2+ | 0.05 | 494.99 | 0.96 | 10.19 | 0.29 | 0.75 |
Cd2+ | 0.45 | 131.14 | 0.95 | 4.55 | 0.33 | 0.73 |
Zn2+ | 1.49 | 94.89 | 0.93 | 5.33 | 0.14 | 0.72 |
重金属离子 | 生物质 | 改性剂 | 吸附量/(mg/g) | 文献 |
---|---|---|---|---|
Hg2+ | 玉米秸秆 | S | 268.45 | [ |
Hg2+ | 牛粪 | S | 407.8 | [ |
Cu2+ | 花生壳 | CH4N2S、H3PO4 | 21.20 | [ |
Cu2+ | 玉米芯 | Na2S2O3 | 165.00 | [ |
Pb2+ | 玉米秸秆 | CS2、FeCl3·6H2O | 124.62 | [ |
Pb2+ | 玉米芯 | Na2S2O3 | 421.80 | [ |
Pb2+ | 芦苇秸秆 | Na2S | 438.86 | 本研究 |
Cd2+ | 玉米秸秆 | CS2、FeCl3·6H2O | 57.71 | [ |
Cd2+ | 玉米秸秆 | Fe2(SO4)3 | 32.55 | [ |
Cd2+ | 芦苇秸秆 | Na2S | 131.14 | 本研究 |
Zn2+ | 甘蔗 | Na2S2O3 | 27.00 | [ |
Zn2+ | 芦苇秸秆 | Na2S | 94.89 | 本研究 |
Ni2+ | 玉米芯 | Na2S | 15.40 | [ |
表5 硫化物改性生物炭吸附去除水体重金属离子研究现状
Table 5 Current status of adsorption and removal of heavy metal ions from water by sulfide modified biochar
重金属离子 | 生物质 | 改性剂 | 吸附量/(mg/g) | 文献 |
---|---|---|---|---|
Hg2+ | 玉米秸秆 | S | 268.45 | [ |
Hg2+ | 牛粪 | S | 407.8 | [ |
Cu2+ | 花生壳 | CH4N2S、H3PO4 | 21.20 | [ |
Cu2+ | 玉米芯 | Na2S2O3 | 165.00 | [ |
Pb2+ | 玉米秸秆 | CS2、FeCl3·6H2O | 124.62 | [ |
Pb2+ | 玉米芯 | Na2S2O3 | 421.80 | [ |
Pb2+ | 芦苇秸秆 | Na2S | 438.86 | 本研究 |
Cd2+ | 玉米秸秆 | CS2、FeCl3·6H2O | 57.71 | [ |
Cd2+ | 玉米秸秆 | Fe2(SO4)3 | 32.55 | [ |
Cd2+ | 芦苇秸秆 | Na2S | 131.14 | 本研究 |
Zn2+ | 甘蔗 | Na2S2O3 | 27.00 | [ |
Zn2+ | 芦苇秸秆 | Na2S | 94.89 | 本研究 |
Ni2+ | 玉米芯 | Na2S | 15.40 | [ |
重金属离子 | 伪一级动力学模型 | 伪二级动力学模型 | Elvoich动力学模型 | ||||||
---|---|---|---|---|---|---|---|---|---|
Qe/(mg/g) | kl | R2 | Qe/(mg/g) | k2 | R2 | α | β | R2 | |
Pb2+ | 475.51 | 0.22 | 0.96 | 514.29 | 0.10 | 0.98 | 2.03 | 0.73 | 0.88 |
Cd2+ | 123.91 | 0.11 | 0.96 | 144.74 | 0.09 | 0.98 | 5.87 | 0.75 | 0.97 |
Zn2+ | 89.22 | 0.17 | 0.96 | 99.97 | 0.26 | 0.98 | 4.23 | 0.89 | 0.94 |
表6 BCS对Pb2+、Cd2+、Zn2+的动力学模型拟合参数
Table 6 Kinetic model fitting parameters of BCS for Pb2+, Cd2+ and Zn2+
重金属离子 | 伪一级动力学模型 | 伪二级动力学模型 | Elvoich动力学模型 | ||||||
---|---|---|---|---|---|---|---|---|---|
Qe/(mg/g) | kl | R2 | Qe/(mg/g) | k2 | R2 | α | β | R2 | |
Pb2+ | 475.51 | 0.22 | 0.96 | 514.29 | 0.10 | 0.98 | 2.03 | 0.73 | 0.88 |
Cd2+ | 123.91 | 0.11 | 0.96 | 144.74 | 0.09 | 0.98 | 5.87 | 0.75 | 0.97 |
Zn2+ | 89.22 | 0.17 | 0.96 | 99.97 | 0.26 | 0.98 | 4.23 | 0.89 | 0.94 |
1 | Cheng S P. Heavy metal pollution in China: origin, pattern and control[J]. Environmental Science and Pollution Research, 2003, 10(3): 192-198. |
2 | Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, et al. Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods[J]. Environmental Technology & Innovation, 2021, 22: 101504. |
3 | Saleh T A, Mustaqeem M, Khaled M. Water treatment technologies in removing heavy metal ions from wastewater: a review[J]. Environmental Nanotechnology, Monitoring & Management, 2022, 17: 100617. |
4 | Wang Z, Luo P P, Zha X B, et al. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil[J]. Journal of Cleaner Production, 2022, 379: 134043. |
5 | Wang X Q, Guo Z Z, Hu Z, et al. Recent advances in biochar application for water and wastewater treatment: a review[J]. Peer, 2020, 8: e9164. |
6 | Kamali M, Appels L, Kwon E E, et al. Biochar in water and wastewater treatment—a sustainability assessment[J]. Chemical Engineering Journal, 2021, 420: 129946. |
7 | Wang L, Wang Y J, Ma F, et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review[J]. Science of the Total Environment, 2019, 668: 1298-1309. |
8 | Hu X L, Xue Y W, Liu L N, et al. Preparation and characterization of Na2S-modified biochar for nickel removal[J]. Environmental Science and Pollution Research International, 2018, 25(10): 9887-9895. |
9 | Enders A, Lehmann J. Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar[J]. Communications in Soil Science and Plant Analysis, 2012, 43(7): 1042-1052. |
10 | Seredych M, Bandosz T J. Removal of dibenzothiophenes from model diesel fuel on sulfur rich activated carbons[J]. Applied Catalysis B: Environmental, 2011, 106(1/2): 133-141. |
11 | Figueiredo J L, Pereira M F R, Freitas M M A, et al. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37(9): 1379-1389. |
12 | Qiu B B, Tao X D, Wang H, et al. Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105081. |
13 | Wang Y, Hu Y T, Zhao X, et al. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times[J]. Energy & Fuels, 2013, 27(10): 5890-5899. |
14 | Leng L J, Xiong Q, Yang L H, et al. An overview on engineering the surface area and porosity of biochar[J]. Science of the Total Environment, 2021, 763: 144204. |
15 | 徐昊, 史广宇, 田晓庆, 等. 颗粒状污泥生物炭对锌铜共污染水体的吸附效应分析[J]. 环境科学学报, 2024, 44(3): 95-104. |
Xu H, Shi G Y, Tian X Q, et al. Enhanced adsorption of zinc and copper co-pollution in water using modified granular sludge biochar[J]. Acta Scientiae Circumstantiae, 2024, 44(3): 95-104. | |
16 | Schimmelpfennig S, Glaser B. One step forward toward characterization: some important material properties to distinguish biochars[J]. Journal of Environmental Quality, 2012, 41(4): 1001-1013. |
17 | Choudhury A, Lansing S. Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104837. |
18 | Lyu H H, Tang J C, Huang Y, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite[J]. Chemical Engineering Journal, 2017, 322: 516-524. |
19 | Yu S X, Zhang W, Dong X W, et al. A review on recent advances of biochar from agricultural and forestry wastes: preparation, modification and applications in wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111638. |
20 | Banik C, Lawrinenko M, Bakshi S, et al. Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars[J]. Journal of Environmental Quality, 2018, 47(3): 452-461. |
21 | da Silva Veiga P A, Cerqueira M H, Gonçalves M G, et al. Upgrading from batch to continuous flow process for the pyrolysis of sugarcane bagasse: structural characterization of the biochars produced[J]. Journal of Environmental Management, 2021, 285: 112145. |
22 | Huang S Z, Liang Q W, Geng J J, et al. Sulfurized biochar prepared by simplified technic with superior adsorption property towards aqueous Hg(Ⅱ) and adsorption mechanisms[J]. Materials Chemistry and Physics, 2019, 238: 121919. |
23 | Zhang H C, Wang T, Sui Z F, et al. Enhanced mercury removal by transplanting sulfur-containing functional groups to biochar through plasma[J]. Fuel, 2019, 253: 703-712. |
24 | Wu C, Shi L Z, Xue S G, et al. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils[J]. Science of the Total Environment, 2019, 647: 1158-1168. |
25 | Leng L J, Liu R F, Xu S Y, et al. An overview of sulfur-functional groups in biochar from pyrolysis of biomass[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107185. |
26 | Rao C N R, Venkataraghavan R. The C ̿ S stretching frequency and the “—N—C ̿ S bands” in the infrared[J]. Spectrochimica Acta Part A: Molecular Spectroscopy, 1989, 45: 299-305. |
27 | Shao F L, Xu J T, Chen F Y, et al. Insights into olation reaction-driven coagulation and adsorption: a pathway for exploiting the surface properties of biochar[J]. Science of the Total Environment, 2023, 854: 158595. |
28 | Dou S, Ke X X, Shao Z D, et al. Fish scale-based biochar with defined pore size and ultrahigh specific surface area for highly efficient adsorption of ciprofloxacin[J]. Chemosphere, 2022, 287: 131962. |
29 | Dhar A K, Himu H A, Bhattacharjee M, et al. Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: a review[J]. Environmental Science and Pollution Research International, 2023, 30(3): 5440-5474. |
30 | Vigneshwaran S, Sirajudheen P, Karthikeyan P, et al. Fabrication of sulfur-doped biochar derived from tapioca peel waste with superior adsorption performance for the removal of Malachite green and Rhodamine B dyes[J]. Surfaces and Interfaces, 2021, 23: 100920. |
31 | 张奎, 王雪梅, 李玉环, 等. 硫改性牛粪生物炭对Hg2+的高效吸附及其机理[J]. 环境工程, 2022, 40(4): 79-88. |
Zhang K, Wang X M, Li Y H, et al. High efficiency adsorption of Hg2+ by sulfur-modified cow manure biochar and its mechanism[J]. Environmental Engineering, 2022, 40(4): 79-88. | |
32 | 闵炳坤, 李坤权. 高比表面硫脲改性花生壳炭的制备及对四环素和铜的吸附[J]. 环境科学, 2023, 44(3): 1528-1536. |
Min B K, Li K Q. Preparation of high specific surface thiourea modified peanut shell carbon and adsorption of tetracycline and copper[J]. Environmental Science, 2023, 44(3): 1528-1536. | |
33 | Yin M M, Bai X G, Wu D P, et al. Sulfur-functional group tunning on biochar through sodium thiosulfate modified molten salt process for efficient heavy metal adsorption[J]. Chemical Engineering Journal, 2022, 433: 134441. |
34 | Cao B, Qu J H, Yuan Y H, et al. Efficient scavenging of aqueous Pb(Ⅱ)/Cd(Ⅱ) by sulfide-iron decorated biochar: performance, mechanisms and reusability exploration[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107531. |
35 | Zhao R, Cao X F, Li T, et al. Co-removal effect and mechanism of Cr(Ⅵ) and Cd(Ⅱ) by biochar-supported sulfide-modified nanoscale zero-valent iron in a binary system[J]. Molecules, 2022, 27(15): 4742. |
36 | Khokhlov A V, Sych N V, Khokhlova L I. Using modified biochar from bagassa for removal heavy metal[J]. Journal of Chemistry and Technologies, 2022, 30(3): 459-465. |
37 | Tang Y, Chen Q M, Li W Q, et al. Engineering magnetic N-doped porous carbon with super-high ciprofloxacin adsorption capacity and wide pH adaptability[J]. Journal of Hazardous Materials, 2020, 388: 122059. |
38 | Wan S L, Qiu L, Tang G, et al. Ultrafast sequestration of cadmium and lead from water by manganese oxide supported on a macro-mesoporous biochar[J]. Chemical Engineering Journal, 2020, 387: 124095. |
39 | Li H B, Dong X L, da Silva E B, et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478. |
40 | Tang N, Niu C G, Li X T, et al. Efficient removal of Cd2+ and Pb2+ from aqueous solution with amino- and thiol-functionalized activated carbon: isotherm and kinetics modeling[J]. Science of the Total Environment, 2018, 635: 1331-1344. |
[1] | 王涛虹, 王超, 李政, 刘莹, 田歌, 常刚刚, 阳晓宇, 鲍宗必. 固载Cu(Ⅰ)的π络合MOF吸附剂用于乙烷/乙烯的选择性分离[J]. 化工学报, 2024, 75(7): 2565-2573. |
[2] | 陈彦伶, 袁炳志, 王丽伟, 张宸, 朱涵玉. 非平衡条件下金属氯化物-氨工质对的吸附动力学研究[J]. 化工学报, 2024, 75(6): 2252-2261. |
[3] | 王岩, 周佳文, 孙培亮, 陈勇, 齐元红, 彭冲. 磁性聚氨基噻唑吸附剂脱除水体Hg2+性能[J]. 化工学报, 2024, 75(6): 2283-2298. |
[4] | 冀钟, 赵彦玲, 陈雨濛, 高林霞, 王翼鹏, 刘欢. ZSM-5分子筛对典型涂装VOCs的吸附性能及机理研究[J]. 化工学报, 2024, 75(6): 2332-2343. |
[5] | 秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881. |
[6] | 汪威, 白旭, 赵翔, 马学良, 林纬, 喻九阳. 基于响应面法的气浮旋流分离条件优化[J]. 化工学报, 2024, 75(5): 1929-1938. |
[7] | 高磊, 戴闻, 杨忠莲, 李淑萍, 闫刚印, 孙琪, 陆勇泽, 朱光灿. 汞对低气压条件下污水处理系统脱氮性能的影响研究[J]. 化工学报, 2024, 75(5): 2036-2046. |
[8] | 李添翼, 武玉泰, 王永胜, 顾佳锐, 宋沂恒, 杨丰铖, 郝广平. 轻同位素分离纯化与催化标记研究进展[J]. 化工学报, 2024, 75(4): 1284-1301. |
[9] | 吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654. |
[10] | 张凯博, 沈佳新, 李玉霞, 谈朋, 刘晓勤, 孙林兵. Y沸石中Cu(Ⅰ)的可控构筑及其乙烯/乙烷吸附分离性能研究[J]. 化工学报, 2024, 75(4): 1607-1615. |
[11] | 孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘. 功能化多孔氮化碳材料对铀的吸附性能研究[J]. 化工学报, 2024, 75(4): 1616-1629. |
[12] | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
[13] | 刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
[14] | 张天永, 张晶怡, 姜爽, 李彬, 吕东军, 陈都民, 陈雪. 弱酸性蓝AS染料排放的废盐制碳基吸附剂及利用[J]. 化工学报, 2024, 75(3): 890-899. |
[15] | 李琢宇, 金鹏, 陈孝彦, 赵泽玉, 王庆宏, 陈春茂, 詹亚力. 零价铁活化过氧乙酸降解水中双酚A的效果与机制[J]. 化工学报, 2024, 75(3): 987-999. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 131
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 243
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||