化工学报 ›› 2024, Vol. 75 ›› Issue (6): 2332-2343.DOI: 10.11949/0438-1157.20240042
冀钟1,2(), 赵彦玲2,3, 陈雨濛1,2, 高林霞1, 王翼鹏4, 刘欢2,3(
)
收稿日期:
2024-01-09
修回日期:
2024-03-29
出版日期:
2024-06-25
发布日期:
2024-07-03
通讯作者:
刘欢
作者简介:
冀钟(1998—),男,硕士研究生,102110852@hbut.edu.cn
基金资助:
Zhong JI1,2(), Yanling ZHAO2,3, Yumeng CHEN1,2, Linxia GAO1, Yipeng WANG4, Huan LIU2,3(
)
Received:
2024-01-09
Revised:
2024-03-29
Online:
2024-06-25
Published:
2024-07-03
Contact:
Huan LIU
摘要:
通过水热法成功合成了一系列宽硅铝比(50、100、150、300、500、800、1500、3000)的ZSM-5分子筛,旨在研究其对涂装行业典型挥发性有机物(volatile organic compounds,VOCs)的吸附规律。同时,结合分子筛表面的酸性位点,以解析硅铝比对分子筛吸附性能的影响机制。实验结果表明,丙酮的吸附能力主要受自身极性、支链结构和分子筛表面酸位点的影响。而乙酸丁酯、苯乙烯、对二甲苯、苯、甲苯的吸附性能会同时受到自身的分子量、分子直径、极性、分子结构和官能团的影响,分子量和分子直径大、极性强且具有支链结构的VOCs更容易被ZSM-5分子筛吸附。这6种VOCs中,ZSM-5分子筛对丙酮的吸附效果最好,硅铝比对其吸附性能的影响也最大。这是因为丙酮比其他VOCs更容易吸附在Lewis酸位点上,硅铝比的改变会影响酸位点的数量。低硅铝比的分子筛由于具有较多的酸位点,更适用于丙酮的吸附。
中图分类号:
冀钟, 赵彦玲, 陈雨濛, 高林霞, 王翼鹏, 刘欢. ZSM-5分子筛对典型涂装VOCs的吸附性能及机理研究[J]. 化工学报, 2024, 75(6): 2332-2343.
Zhong JI, Yanling ZHAO, Yumeng CHEN, Linxia GAO, Yipeng WANG, Huan LIU. Adsorption performance and mechanism of ZSM-5 molecular sieves on typical coating VOCs[J]. CIESC Journal, 2024, 75(6): 2332-2343.
图5 不同硅铝比分子筛的氮气脱附曲线(a)和孔径分布(b)
Fig.5 Nitrogen desorption curves (a) and pore size distribution (b) of molecular sieves with different silicon-aluminum ratios
样品 | 理论Si/Al | 实际Si/Al | 总比表面积/(m2/g)① | 微孔表面积/(m2/g)② | 外比表面积/(m2/g) | 总孔容/(m3/g)③ | 平均孔径/nm④ |
---|---|---|---|---|---|---|---|
1 | 50 | 48.49 | 420.59 | 360.74 | 59.85 | 0.36 | 3.47 |
2 | 100 | 91.84 | 471.92 | 396.42 | 75.50 | 0.54 | 4.54 |
3 | 150 | 129.88 | 468.11 | 407.82 | 60.29 | 0.62 | 5.32 |
4 | 300 | 245.05 | 402.45 | 335.09 | 67.36 | 0.24 | 2.43 |
5 | 500 | 350.98 | 416.94 | 369.04 | 47.90 | 0.26 | 2.46 |
6 | 800 | 547.63 | 438.67 | 391.86 | 46.81 | 0.24 | 2.42 |
7 | 1500 | 730.17 | 465.56 | 373.01 | 92.43 | 0.38 | 3.23 |
8 | 3000 | 933.74 | 437.19 | 372.81 | 64.37 | 0.33 | 3.01 |
表1 合成不同硅铝比分子筛的基本参数
Table 1 Basic parameters for the synthesis of molecular sieves with different Si/Al ratios
样品 | 理论Si/Al | 实际Si/Al | 总比表面积/(m2/g)① | 微孔表面积/(m2/g)② | 外比表面积/(m2/g) | 总孔容/(m3/g)③ | 平均孔径/nm④ |
---|---|---|---|---|---|---|---|
1 | 50 | 48.49 | 420.59 | 360.74 | 59.85 | 0.36 | 3.47 |
2 | 100 | 91.84 | 471.92 | 396.42 | 75.50 | 0.54 | 4.54 |
3 | 150 | 129.88 | 468.11 | 407.82 | 60.29 | 0.62 | 5.32 |
4 | 300 | 245.05 | 402.45 | 335.09 | 67.36 | 0.24 | 2.43 |
5 | 500 | 350.98 | 416.94 | 369.04 | 47.90 | 0.26 | 2.46 |
6 | 800 | 547.63 | 438.67 | 391.86 | 46.81 | 0.24 | 2.42 |
7 | 1500 | 730.17 | 465.56 | 373.01 | 92.43 | 0.38 | 3.23 |
8 | 3000 | 933.74 | 437.19 | 372.81 | 64.37 | 0.33 | 3.01 |
图6 不同分子量VOCs在ZSM-5分子筛上吸附的饱和吸附量(a)和穿透时间(b)
Fig.6 Saturation adsorption (a) and penetration time (b) of different molecular weight VOCs adsorbed on ZSM-5 molecular sieves
图7 不同分子直径VOCs在ZSM-5分子筛上吸附的饱和吸附量(a)和穿透时间(b)
Fig.7 Saturation adsorption (a) and penetration time (b) of VOCs with different molecular diameters adsorbed on ZSM-5 molecular sieves
图8 不同结构VOCs在ZSM-5分子筛上吸附的饱和吸附量(a)和穿透时间(b)
Fig.8 Saturation adsorption (a) and penetration time (b) of VOCs with different structures adsorbed on ZSM-5 molecular sieves
图9 不同偶极矩VOCs在ZSM-5分子筛上吸附的饱和吸附量(a)和穿透时间(b)(1 D=3.33564×10-30 C·m)
Fig.9 Saturation adsorption (a) and penetration time (b) of VOCs with different dipole moments adsorbed on ZSM-5 molecular sieves
图10 不同硅铝比ZSM-5分子筛吸附丙酮和乙酸丁酯的饱和吸附量(a)和穿透时间(b)
Fig.10 Saturation adsorption (a) and penetration time (b) of acetone and butyl acetate adsorbed on ZSM-5 molecular sieves with different silica-to-aluminum ratios
图12 硅铝比100、500分子筛对丙酮、乙酸丁酯吸附前后NH3-TPD测试图和质谱测试图(Ⅰ、Ⅱ、Ⅲ分别为分子筛吸附VOCs前后弱、中、强酸变化量)
Fig.12 NH3-TPD test graphs and mass spectrometry test graphs before and after adsorption of acetone and butyl acetate on silica-aluminium ratios of 100 and 500 molecular sieves(Ⅰ,Ⅱ,Ⅲ indicate the change of weak, medium and strong acids before and after VOCs adsorption)
1 | Ou R, Chang C, Zeng Y, et al. Emission characteristics and ozone formation potentials of VOCs from ultra-low-emission waterborne automotive painting[J]. Chemosphere, 2022, 305: 135469. |
2 | Yu B, Yuan Z, Yu Z, et al. Btex in the environment: an update on sources, fate, distribution, pretreatment, analysis, and removal techniques[J]. Chemical Engineering Journal, 2022, 435: 134825. |
3 | 汪林正, 陆俞冰, 张睿智, 等. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74 (8): 3242-3255. |
Wang L Z, Lu Y B, Zhang R Z, et al. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation[J]. CIESC Journal, 2023, 74(8): 3242-3255. | |
4 | 冯勇超, 于庆君, 易红宏, 等. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098. |
Fong Y C, Yu Q J, Yi H H, et al. Research progress of MFI-type zeolites in the field of VOCs removal[J]. Materials Review, 2020, 34(17): 17089-17098. | |
5 | Tada S, Li D, Okazaki M, et al. Influence of Si/Al ratio of MOR type zeolites for bifunctional catalysts specific to the one-pass synthesis of lower olefins via CO2 hydrogenation[J]. Catalysis Today, 2023, 411/412: 113828. |
6 | Jindal M, Palla V C S, Thallada B. Effect of zeolite structure and Si/Al ratio on cotton stalks hydropyrolysis[J]. Bioresource Technology, 2023, 376: 128933. |
7 | Li X F, Wang J, Guo Y Y, et al. Adsorption and desorption characteristics of hydrophobic hierarchical zeolites for the removal of volatile organic compounds[J]. Chemical Engineering Journal, 2021, 411: 128558. |
8 | Shu Q, Sun Z, Zhu G, et al. Highly efficient synthesis of ZSM-5 zeolite by one-step microwave using desilication solution of coal gasification coarse slag and its application to VOCs adsorption[J]. Process Safety and Environmental Protection, 2022, 167: 173-183. |
9 | Kang S Y, Ma J Z, Wu Q M, et al. Adsorptive removal of dichloromethane vapor on FAU and MFI zeolites: Si/Al ratio effect and mechanism[J]. Journal of Chemical and Engineering Data, 2018, 63(6): 2211-2218. |
10 | Zhang P. The adsorption of VOCs by honeycomb ceramics loaded with molecular sieves[J]. Journal of Chemistry, 2022(24): 1-7. |
11 | Dai J, Zhou X, Chen Z, et al. Synthesis of zeolite nanocrystals with intercrystal mesopores using an organosilane as the structure directing agent[J]. RSC Advances, 2016, 6(111): 109897-109901. |
12 | Yu Q J, Zhuang R J, Yi H H, et al. Application of MCM-48 with large specific surface area for VOCs elimination: synthesis and hydrophobic functionalization for highly efficient adsorption[J]. Environmental Science and Pollution Research, 2022, 29: 33595-33608. |
13 | Gao L, Kong X, Meng D, et al. Preparation of a novel zeolite Y-stainless-steel wire mesh honeycomb for VOC capture[J]. Microporous and Mesoporous Materials, 2021, 328: 111438. |
14 | 高君安, 王伟, 张傑, 等. 用于高湿度废气中甲苯吸附净化的疏水型ZSM-5分子筛的合成及其吸附性能研究[J]. 化工学报, 2020, 71(1): 337-343. |
Gao J A, Wang W, Zhang J, et al. Study on synthesis and adsorption performance of hydrophobic ZSM-5 zeolites for removal of toluene in high-humidity exhaust gas[J]. CIESC Journal, 2020, 71(1): 337-343. | |
15 | Tang K, Hong X. Preparation and characterization of co-MCM-41 and its adsorption removing basic nitrogen compounds from fluidized catalytic cracking diesel oil[J]. Energy & Fuels, 2016, 30(6): 4619-4624. |
16 | Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[J]. Pure & Applied Chemistry, 2015, 87(9/10): 1051-1069. |
17 | Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chemistry of Materials, 2001, 13(10): 3169-3183. |
18 | Yin T, Meng X, Jin L, et al. Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment[J]. 2020, 305: 110327. |
19 | Soltan W B, Ammar S, Olivier C, et al. Influence of zinc doping on the photocatalytic activity of nanocrystalline SnO2 particles synthesized by the polyol method for enhanced degradation of organic dyes[J]. Journal of Alloys and Compounds, 2017, 729: 638-647. |
20 | Batur E, Kutluay S. Dynamic adsorption behavior of benzene, toluene, and xylene vocs in single- and multi-component systems by activated carbon derived from defatted black cumin (Nigella sativa L.) biowaste[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107565. |
21 | Choi H J, Hong S B. Effect of framework Si/Al ratio on the mechanism of CO2 adsorption on the small-pore zeolite gismondine[J]. Chemical Engineering Journal, 2022, 433: 133800. |
22 | Han Y, Larmier K, Rivallan M, et al. Generation of mesoporosity in H-Y zeolites by basic or acid/basic treatments: towards a guideline of optimal Si/Al ratio and basic reagent[J]. Microporous and Mesoporous Materials, 2024, 365: 112906. |
23 | Wang Y, Yokoi T, Tatsumi T. Selective production of light olefins over zeolite catalysts: impacts of topology, acidity, and particle size[J]. Microporous and Mesoporous Materials, 2023, 358: 112353. |
24 | Shan J, Li Z, Chen Z, et al. Enhancement in catalytic performance of HZSM-5 zeolite for glycerol dehydration after acidity regulation[J]. Chemical Engineering Journal, 2023, 460: 141741. |
25 | Kim J, Kwon E E, Lee J E, et al. Effect of zeolite acidity and structure on ozone oxidation of toluene using Ru-Mn loaded zeolites at ambient temperature[J]. Journal of Hazardous Materials, 2021, 403: 123934. |
26 | Chen L, Janssens T V W, Skoglundh M, et al. Interpretation of NH3-TPD profiles from Cu-CHA using first-principles calculations[J]. Topics in Catalysis, 2019, 62(1): 93-99. |
27 | Li D, Wang L, Lu Y, et al. New insights into the catalytic mechanism of VOCs abatement over Pt/Beta with active sites regulated by zeolite acidity[J]. Applied Catalysis B: Environmental, 2023, 334: 122811. |
28 | Hu M, Wang C, Chu Y, et al. Unravelling the reactivity of framework lewis acid sites towards methanol activation on H‐ZSM‐5 zeolite with solid‐state NMR spectroscopy[J]. Angewandte Chemie, 2022, 134(42): 1-6. |
29 | Ravi M, Sushkevich V L, van Bokhoven J A. On the location of lewis acidic aluminum in zeolite mordenite and the role of framework-associated aluminum in mediating the switch between Brønsted and Lewis acidity[J]. Chemical Science, 2021, 12(11): 4094-4103. |
30 | Emdadi L, Tran D T, Wu Y, et al. Bea nanosponge/ultra-thin lamellar MFI prepared in one-step: integration of 3D and 2D zeolites into a composite for efficient alkylation reactions[J]. Applied Catalysis A: General, 2017, 530: 56-65. |
[1] | 陈彦伶, 袁炳志, 王丽伟, 张宸, 朱涵玉. 非平衡条件下金属氯化物-氨工质对的吸附动力学研究[J]. 化工学报, 2024, 75(6): 2252-2261. |
[2] | 王岩, 周佳文, 孙培亮, 陈勇, 齐元红, 彭冲. 磁性聚氨基噻唑吸附剂脱除水体Hg2+性能[J]. 化工学报, 2024, 75(6): 2283-2298. |
[3] | 秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881. |
[4] | 李添翼, 武玉泰, 王永胜, 顾佳锐, 宋沂恒, 杨丰铖, 郝广平. 轻同位素分离纯化与催化标记研究进展[J]. 化工学报, 2024, 75(4): 1284-1301. |
[5] | 吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654. |
[6] | 张凯博, 沈佳新, 李玉霞, 谈朋, 刘晓勤, 孙林兵. Y沸石中Cu(Ⅰ)的可控构筑及其乙烯/乙烷吸附分离性能研究[J]. 化工学报, 2024, 75(4): 1607-1615. |
[7] | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
[8] | 刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
[9] | 孟园, 倪善, 刘亚锋, 王文杰, 赵越, 朱育丹, 杨良嵘. 功能化多孔氮化碳材料对铀的吸附性能研究[J]. 化工学报, 2024, 75(4): 1616-1629. |
[10] | 张天永, 张晶怡, 姜爽, 李彬, 吕东军, 陈都民, 陈雪. 弱酸性蓝AS染料排放的废盐制碳基吸附剂及利用[J]. 化工学报, 2024, 75(3): 890-899. |
[11] | 王宝凤, 王术高, 程芳琴. 固废基硫掺杂多孔炭材料制备及其对CO2吸附性能研究进展[J]. 化工学报, 2024, 75(2): 395-411. |
[12] | 王尤佳, 赵亮, 高金森, 徐春明. 柴油烃类族组成分离技术研究进展[J]. 化工学报, 2024, 75(1): 20-32. |
[13] | 孟祥军, 花莹曦, 张长金, 张弛, 杨林睿, 杨若昔, 刘鉴漪, 许春建. 6N电子级氘气的制备与纯化技术研究[J]. 化工学报, 2024, 75(1): 377-390. |
[14] | 闫可欣, 姜洪涛, 高维群, 郭晓晖, 孙伟振, 赵玲. 电子级多晶硅原料中痕量硼磷杂质的脱除研究进展[J]. 化工学报, 2024, 75(1): 83-94. |
[15] | 齐元帅, 彭文朝, 李阳, 张凤宝, 范晓彬. 电化学脱盐机理及相关研究进展[J]. 化工学报, 2024, 75(1): 171-189. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 345
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 240
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||