化工学报 ›› 2025, Vol. 76 ›› Issue (2): 769-786.DOI: 10.11949/0438-1157.20240835

• 过程系统工程 • 上一篇    

基于DVAE-WAFFN-GAN的不平衡样本的工业过程性能评估方法

付文峰1(), 王振雷1(), 王昕2   

  1. 1.华东理工大学工业控制技术全国重点实验室,上海 200237
    2.上海交通大学电工电子实验教学中心,上海 200240
  • 收稿日期:2024-07-23 修回日期:2024-09-06 出版日期:2025-03-25 发布日期:2025-03-10
  • 通讯作者: 王振雷
  • 作者简介:付文峰(2000—),男,硕士研究生,ff187499@163.com
  • 基金资助:
    国家重点研发计划项目(2023YFB3307800);国家自然科学基金重大项目(62394343);国家自然科学基金面上项目(62273149);中央高校基本科研业务费专项资金项目(222202417006)

An industrial process performance evaluation method based on unbalanced samples generated by DVAE-WAFFN-GAN

Wenfeng FU1(), Zhenlei WANG1(), Xin WANG2   

  1. 1.State Key Laboratory of Industrial Control Technology, East China University of Science and Technology, Shanghai 200237, China
    2.Center of Electrical & Electronic Technology, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2024-07-23 Revised:2024-09-06 Online:2025-03-25 Published:2025-03-10
  • Contact: Zhenlei WANG

摘要:

在复杂工业生产过程中,为提高产品质量和生产效率,建立准确的工业运行状态性能等级评估模型十分重要。近年来,深度学习技术在这个领域中取得了一些进展。然而,实际工业生产过程中经常遇到数据样本不平衡情况,现有的深度学习性能评估方法在有限的少数样本中挖掘有价值的特征信息能力不佳,从而导致性能评估准确度低。为此,设计了一种双变分自编码器权重特征自适应融合的生成对抗网络(generative adversarial network based on weighted adaptive feature fusion network of double variational autoencoder,DVAE-WAFFN-GAN),对较少类别样本进行增强,提高了性能评估的准确度。该方法将VAE和GAN网络进行结合,首先用稀少类数据去预训练卷积变分自编码器(CNN-VAE)和长短时记忆变分自编码器(LSTM-VAE)提取真实数据的时空特征信息。训练生成网络时,随机噪声先输入到预训练的两个解码器中,解码器输出真实样本编码后的特征向量,再利用注意力机制设计权重自适应特征融合网络(WAFFN)对两个变分自编码器解码器输出的特征向量赋予不同权重进行融合,利用融合后的特征向量代替原始GAN中的随机噪声去生成数据,从而提高生成器生成数据的质量,提高性能评估的准确率。最后将该方法在样本不平衡的工业数据集上进行仿真实验。

关键词: 深度学习, 生成对抗网络, 特征融合, 注意力机制, 工业过程性能评估

Abstract:

In complex industrial production process, it is very important to establish an accurate evaluation model of industrial running state performance grade in order to improve product quality and production efficiency. In recent years, deep learning techniques have made some progress in this area. However, unbalanced data samples are often encountered in the actual industrial production process, and the existing deep learning performance evaluation methods have poor ability to mine valuable feature information in a limited number of samples, resulting in low performance evaluation accuracy. To this end, this paper designs a generative adversarial network based on weighted adaptive feature fusion network of double variational autoencoder (DVAE-WAFFN-GAN) to enhance samples of fewer categories and improve the accuracy of performance evaluation. This method combines VAE and GAN networks. First, sparse data are used to pre-train the convolutional variational autoencoder (CNN-VAE) and the long short-term memory variational autoencoder (LSTM-VAE) to extract temporal and spatial characteristics of real data. When training the generated network, the random noise is first input into the two pre-trained decoders, and the decoder outputs the encoded feature vector of the real sample. Then, the WAFFN is designed using the attention mechanism to give different weights to the feature vectors output by the two variational autoencoder decoders for fusion. The fused feature vectors are used to replace the random noise in the original GAN to generate data, so as to improve the quality of data generated by the generator and improve the accuracy of performance evaluation. Finally, the method is simulated on the unbalanced industrial data set.

Key words: deep learning, generative adversarial networks, feature fusion, attention mechanisms, industrial performance evaluation

中图分类号: