化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 181-186.DOI: 10.11949/0438-1157.20241382

• 流体力学与传递现象 • 上一篇    

基于压电-声流效应的液滴定向驱动技术研究

王宇涛1(), 龚建英1(), 李祥宇1, 吴馨1, 刘秀芳2   

  1. 1.西安交通大学能源与动力工程学院,热流科学与工程教育部重点实验室,陕西 西安 710049
    2.西安交通大学深低温技术与装备教育部重点实验室,陕西 西安 710049
  • 收稿日期:2024-12-02 修回日期:2024-12-13 出版日期:2025-06-25 发布日期:2025-06-26
  • 通讯作者: 龚建英
  • 作者简介:王宇涛(2000—),男,博士研究生,wyt20001209@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51776149);国家重点研发计划项目(2021YFB1507303)

Study on directionally propelled droplet based on the piezoelectric-acoustic streaming effect

Yutao WANG1(), Jianying GONG1(), Xiangyu LI1, Xin WU1, Xiufang LIU2   

  1. 1.MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    2.MOE Key Laboratory of Cryogenic Technology and Equipment, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2024-12-02 Revised:2024-12-13 Online:2025-06-25 Published:2025-06-26
  • Contact: Jianying GONG

摘要:

附着在平板上的液滴能够吸收超声振动产生定向移动,采用压电-声流效应将液滴定向驱离表面,有望在结霜早期的冷凝液滴阶段抑制霜的形成。提出一种基于压电-声流效应的液滴定向驱动技术,开发了以玻璃平板为基底的实验装置并分析了装置的工作原理,研究了驱动电压和液滴体积对液滴运动速度的影响。这种技术能够通过35 V以上的低电压驱动大于50 μl的液滴,实验条件下液滴的运动速度最大达88 mm/s。结果表明,压电-声流效应定向驱动液滴是一种有效的抑霜方法。

关键词: 压电效应, 声流效应, 液滴驱动, 抑霜, 能量分析

Abstract:

Sessile droplets on a flat plate can absorb ultrasonic vibration and move directionally. Utilizing the piezoelectricity-acoustic streaming effect to propel droplets away from the surface directionally shows promise in inhibiting frost formation during the early stage of condensation droplets. In this study, a droplet propel technology based on the piezoelectricity-acoustic streaming effect is proposed. An experimental device with a glass flat surface as the substrate was developed, the working principle of the device was analyzed, and the effects of driving voltage and droplet volume on droplet movement speed are studied. This method can drive droplets larger than 50 μl with a voltage above 35 V, and under experimental conditions, the maximum droplet movement speed reached 88 mm/s. The results indicate that directional driving of droplets using the piezoelectric acoustic streaming effect is an effective method for defrosting formation.

Key words: piezoelectricity, acoustic streaming, droplet movement, defrost, energy analysis