化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 170-180.DOI: 10.11949/0438-1157.20241187
• 流体力学与传递现象 • 上一篇
赵子祥1,2(
), 段钟弟1,2(
), 孙浩然3, 薛鸿祥1,2
收稿日期:2024-10-24
修回日期:2024-10-30
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
段钟弟
作者简介:赵子祥(1999—),男,硕士研究生,zhaozixiang@sjtu.edu.cn
基金资助:
Zixiang ZHAO1,2(
), Zhongdi DUAN1,2(
), Haoran SUN3, Hongxiang XUE1,2
Received:2024-10-24
Revised:2024-10-30
Online:2025-06-25
Published:2025-06-26
Contact:
Zhongdi DUAN
摘要:
当冷水回流或注入蒸汽管路时,将在管道内形成大温差的两相流动,导致管内发生蒸汽凝结水锤现象,造成瞬态高峰压力脉冲。为了预报凝结水锤的压力载荷,建立一种计及管道截面弹性形变的可压缩两相流体六方程数学模型,通过真实物性状态方程、两相流型判别公式和流动传热计算模型库予以封闭,并通过自编程序实现压力载荷的数值模拟。基于凝结水锤的PMK-2实验验证了模型的计算精度,压力峰值的预报结果与实验值偏差为1.7%。使用该模型对冷水注入蒸汽管道和非能动余热排出两种工况进行了计算研究。在冷水注入工况下发现:随着冷水流速提高,压力脉冲峰值增加;液相温度提高,压力峰值随之减小;当管道直径足够小时,将不再出现水锤现象。
中图分类号:
赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180.
Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference[J]. CIESC Journal, 2025, 76(S1): 170-180.
| 冷水流速/(m/s) | 压力峰值/MPa | 水锤发生时间/s | 水锤发生位置/cm |
|---|---|---|---|
| 0.10 | 7.07 | 3.86 | 28.5 |
| 0.24 | 13.78 | 2.09 | 57.0 |
| 0.30 | 17.16 | 0.65 | 57.0 |
| 0.33 | 20.13 | 0.65 | 57.0 |
| 0.40 | 21.51 | 0.38 | 85.5 |
表1 冷水流速对凝结水锤的影响
Table 1 Effect of cold water flow rate on condensation water hammer
| 冷水流速/(m/s) | 压力峰值/MPa | 水锤发生时间/s | 水锤发生位置/cm |
|---|---|---|---|
| 0.10 | 7.07 | 3.86 | 28.5 |
| 0.24 | 13.78 | 2.09 | 57.0 |
| 0.30 | 17.16 | 0.65 | 57.0 |
| 0.33 | 20.13 | 0.65 | 57.0 |
| 0.40 | 21.51 | 0.38 | 85.5 |
| 冷水温度/K | 压力峰值/MPa | 水锤发生 时间/s | 水锤发生 位置/cm |
|---|---|---|---|
| 285 | 18.51 | 2.12 | 57.0 |
| 295 | 13.78 | 2.08 | 57.0 |
| 305 | 11.05 | 1.97 | 28.5 |
| 315 | 7.03 | 1.84 | 28.5 |
| 325 | 脉冲效应不明显,最大压力为1.85 MPa | ||
表2 冷水温度对凝结水锤的影响
Table 2 Effect of cold water temperature on condensation water hammer
| 冷水温度/K | 压力峰值/MPa | 水锤发生 时间/s | 水锤发生 位置/cm |
|---|---|---|---|
| 285 | 18.51 | 2.12 | 57.0 |
| 295 | 13.78 | 2.08 | 57.0 |
| 305 | 11.05 | 1.97 | 28.5 |
| 315 | 7.03 | 1.84 | 28.5 |
| 325 | 脉冲效应不明显,最大压力为1.85 MPa | ||
| 管道直径/mm | 压力峰值/MPa | 水锤发生时间/s |
|---|---|---|
| 80.5 | 20.31 | 2.44 |
| 78.0 | 15.03 | 2.24 |
| 75.5 | 14.39 | 2.19 |
| 73.0 | 13.78 | 2.08 |
| 70.5 | 6.44 | 1.96 |
| 68.0 | 脉冲效应不明显,最大压力为2.78 MPa | |
| 63.0 | 脉冲效应不明显,最大压力为1.80 MPa | |
表3 管道直径对凝结水锤的影响
Table 3 Effect of tube diameters
| 管道直径/mm | 压力峰值/MPa | 水锤发生时间/s |
|---|---|---|
| 80.5 | 20.31 | 2.44 |
| 78.0 | 15.03 | 2.24 |
| 75.5 | 14.39 | 2.19 |
| 73.0 | 13.78 | 2.08 |
| 70.5 | 6.44 | 1.96 |
| 68.0 | 脉冲效应不明显,最大压力为2.78 MPa | |
| 63.0 | 脉冲效应不明显,最大压力为1.80 MPa | |
| 1 | 赵文一, 匡以武, 王文, 等. 水平管内冷凝流动的稳定性[J]. 化工学报, 2021, 72(S1): 257-265. |
| Zhao W Y, Kuang Y W, Wang W, et al. Stability of condensing flow in a horizontal tube[J]. CIESC Journal, 2021, 72(S1): 257-265. | |
| 2 | 郝毅. 核电机组中蒸汽凝结引发的水锤事件分析与处理[J]. 电工技术, 2024(9): 191-194. |
| Hao Y. Analysis and treatment of water hammer events caused by steam condensation in nuclear power units[J]. Electric Engineering, 2024(9): 191-194. | |
| 3 | Giot M, Prasser H M, Dudlik A, et al. Two phase flow water hammer transients and induced loads on materials and structures of nuclear power plants (WAHALoads)[R]. Luxembourg: FISA-2001 EU Research in Reactor Safety, 2001. |
| 4 | Barna I F, Ezsöl G. Multiple condensation induced water hammer events, experiments and theoretical investigations[J]. Kerntechnik, 2011, 76(4): 231-236. |
| 5 | Urban C, Schlüter M. Investigations on the stochastic nature of condensation induced water hammer[J]. International Journal of Multiphase Flow, 2014, 67: 1-9. |
| 6 | Datta P, Chakravarty A, Saha R, et al. Experimental investigation on the effect of initial pressure conditions during steam-water direct contact condensation in a horizontal pipe geometry[J]. International Communications in Heat and Mass Transfer, 2021, 121: 105082. |
| 7 | Sun J C, Deng J, Ran X, et al. Experimental study on flow modes and transient characteristics in low-pressure equal-height-difference natural circulation system [J]. Annals of Nuclear Energy, 2021, 151: 107965. |
| 8 | 刘文兵, 张卓华, 蔡海刚, 等. 非能动余热排出管内蒸汽凝结水击压力振荡特性实验研究[J]. 动力工程学报, 2021, 41(10): 892-897, 904. |
| Liu W B, Zhang Z H, Cai H G, et al. Experimental investigation on pressure oscillation characteristics of condensation induced water hammer in passive residual heat removal pipeline[J]. Journal of Chinese Society of Power Engineering, 2021, 41(10): 892-897, 904. | |
| 9 | 赵旭崇, 段钟弟, 王志伟, 等. 水平管内凝结水锤气液界面演化的实验研究[J]. 原子能科学技术, 2023, 57(S1): 79-88. |
| Zhao X C, Duan Z D, Wang Z W, et al. Experimental study of gas-liquid interface evolution of condensed water hammer in horizontal tube[J]. Atomic Energy Science and Technology, 2023, 57(S1): 79-88. | |
| 10 | Shi M X, Duan Z D, Zhao X C, et al. Experimental investigation on two-phase flow instability induced by direct contact condensation in open natural circulation[J]. Energy, 2024, 292: 130547. |
| 11 | Zouhri L, Smaoui H, Carlier E, et al. Modelling of hydrodispersive processes in the fissured media by flux limiters schemes (Chalk aquifer, France) [J]. Mathematical and Computer Modelling, 2009, 50(3/4): 516-525. |
| 12 | Štrubelj L, Ézsöl G, Tiselj I. Direct contact condensation induced transition from stratified to slug flow[J]. Nuclear Engineering and Design, 2010, 240(2): 266-274. |
| 13 | Ceuca S C, Macián-Juan R. CFD simulation of direct contact condensation with ANSYS CFX using locally defined heat transfer coefficients[C]//Volume 4: Codes, Standards, Licensing, and Regulatory Issues; Fuel Cycle, Radioactive Waste Management and Decommissioning; Computational Fluid Dynamics (CFD) and Coupled Codes; Instrumentation and Co. Anaheim, California, USA. ASME, 2012: 429-437. |
| 14 | Höhne T, Gasiunas S, Šeporaitis M. Numerical modelling of a direct contact condensation experiment using the AIAD framework[J]. International Journal of Heat and Mass Transfer, 2017, 111: 211-222. |
| 15 | Li S Q, Wang P, Lu T. CFD based approach for modeling steam–water direct contact condensation in subcooled water flow in a tee junction[J]. Progress in Nuclear Energy, 2015, 85: 729-746. |
| 16 | Pham T Q D, Choi S. Numerical analysis of direct contact condensation-induced water hammering effect using OpenFOAM in realistic steam pipes[J]. International Journal of Heat and Mass Transfer, 2021, 171: 121099. |
| 17 | Tiselj I, Petelin S. Modelling of two-phase flow with second-order accurate scheme[J]. Journal of Computational Physics, 1997, 136(2): 503-521. |
| 18 | Ceuca S, Laurinavicius D. Experimental and numerical investigations on the direct contact condensation phenomenon in horizontal flow channels and its implications in nuclear safety[J]. Kerntechnik, 2016, 81(5): 504-511. |
| 19 | Hibiki T, Rassame S, Liu W B, et al. Modeling and simulation of onset of condensation-induced water hammer [J]. Progress in Nuclear Energy, 2020, 130: 103555. |
| 20 | 梁卫红, 解衡. 水平管冷凝流动不稳定性分析[J]. 原子能科学技术, 2017, 51(12): 2191-2195. |
| Liang W H, Xie H. Analysis of condensing flow instability on horizontal tube[J]. Atomic Energy Science and Technology, 2017, 51(12): 2191-2195. | |
| 21 | Milivojevic S, Stevanovic V D, Maslovaric B. Condensation induced water hammer: numerical prediction[J]. Journal of Fluids and Structures, 2014, 50: 416-436. |
| 22 | Wylie E B, Streeter V L, Wiggert D C. Fluid transients[J]. Journal of Fluids Engineering, 1980, 102(3): 384-385. |
| 23 | Drew D, Cheng L, Lahey R T. The analysis of virtual mass effects in two-phase flow[J]. International Journal of Multiphase Flow, 1979, 5(4): 233-242. |
| 24 | 王海燕, 李玉星, 蔡晓华, 等. 基于段塞流的通用气液两相流模型的建立与验证[J]. 化工学报, 2013, 64(10): 3549-3557. |
| Wang H Y, Li Y X, Cai X H, et al. Development and verification of unified model based on slug flow for gas-liquid two-phase flow[J]. CIESC Journal, 2013, 64(10): 3549-3557. | |
| 25 | Abraham J P, Sparrow E M, Tong J C K. Heat transfer in all pipe flow regimes: laminar, transitional/intermittent, and turbulent[J]. International Journal of Heat and Mass Transfer, 2009, 52(3): 557-563. |
| 26 | Glaister P. Flux difference splitting for the Euler equations in one spatial co-ordinate with area variation[J]. International Journal for Numerical Methods in Fluids, 1988, 8(1): 97-119. |
| 27 | 唐树江. 几类高精度高分辨率格式的构造与应用[D]. 湘潭: 湘潭大学, 2019. |
| Tang S J. Construction and application of several kinds of high-precision and high-resolution schemes[D]. Xiangtan: Xiangtan University, 2019. | |
| 28 | Li T T, Lu J F, Wang P D. Stability analysis of inverse lax-wendroff procedure for a high order compact finite difference schemes[J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 142-189. |
| 29 | 王宁, 周领, 李赟杰, 等. 黏弹性管道水柱分离弥合水锤有限体积法模型[J]. 力学学报, 2022, 54(7): 1952-1959. |
| Wang N, Zhou L, Li Y J, et al. Finite volume model of water column separation and rejoining water hammer in viscoelastic pipes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1952-1959. | |
| 30 | 兰德尔·勒维克. 守恒律方程的数值方法[M]. 朱华君, 译. 北京: 国防工业出版社, 2017: 103. |
| LeVeque R. Numerical Methods for Conservation Laws[M]. Zhu H J, trans. Beijing: National Defense Industry Press, 2017: 103. | |
| 31 | 杜兆月. Peng-Robinson状态方程的数值方法研究[D]. 郑州: 郑州大学, 2022. |
| Du Z Y. Study on numerical method of Peng-Robinson's equation of state[D]. Zhengzhou: Zhengzhou University, 2022. |
| [1] | 苏伟, 赵大海, 金旭, 刘忠彦, 李静, 张小松. 吸湿液滴与混合润湿性表面协同抑霜特性研究[J]. 化工学报, 2025, 76(S1): 140-151. |
| [2] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [3] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [4] | 张翼辰, 张文彪, 李浩洋, 宁晓阳. 基于双差压模型的文丘里管气液两相CO2流量测量[J]. 化工学报, 2025, 76(4): 1493-1503. |
| [5] | 许成城, 邵索拉, 魏文建, 郑旭. 多工况下直凝式蓄热型铝制辐射板换热器供暖性能研究[J]. 化工学报, 2025, 76(4): 1545-1558. |
| [6] | 贾文龙, 肖欢, 冷翔宇, 黄巧竞, 刘程玮, 吴瑕. 原油储罐重质沉积物超声波空化微射流清洗实验及数值模拟[J]. 化工学报, 2025, 76(3): 1288-1296. |
| [7] | 张亦鸣, 杨鹏, 纪献兵, 任纪星, 张磊, 苗政. 多回路平板式环路热管热性能[J]. 化工学报, 2025, 76(3): 1018-1028. |
| [8] | 田浩辰, 马志先, 王之浩. R1234ze(E)水平三维肋管外膜状凝结特性实验研究[J]. 化工学报, 2025, 76(3): 975-984. |
| [9] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
| [10] | 黄云龙, 许剑, 刘通, 元昕彤, 徐强. 气藏水平井温度分布特征及流量测试实验研究[J]. 化工学报, 2025, 76(2): 612-622. |
| [11] | 张珂, 任维杰, 王梦娜, 范凯锋, 常丽萍, 李佳斌, 马涛, 田晋平. Bunsen反应产物在微通道中的液-液两相混合特性[J]. 化工学报, 2025, 76(2): 623-636. |
| [12] | 张泽雨, 王平, 戴凯论, 钱伟佳, Roy Subhajit, 帅瑞洋, Ferrante Antonio. 轴向双级氨/甲烷湍流预混火焰燃烧特性及NO生成[J]. 化工学报, 2025, 76(2): 835-845. |
| [13] | 贾晶宇, 孔德齐, 沈圆辉, 张东辉, 李文彬, 唐忠利. 合成氨反应器尾气变压吸附氨分离工艺的模拟与分析[J]. 化工学报, 2025, 76(2): 718-730. |
| [14] | 姚佳逸, 张东辉, 唐忠利, 李文彬. 基于二级双回流的变压吸附捕碳工艺研究[J]. 化工学报, 2025, 76(2): 744-754. |
| [15] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 重质颗粒流态化研究现状与展望[J]. 化工学报, 2025, 76(2): 466-483. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号