化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2073-2082.doi: 10.11949/0438-1157.20211568

• 过程系统工程 • 上一篇    下一篇

一种煤基多联产碳循环系统的设计及评价

侯起旺1(),文兆伦1,张忠林1(),刘叶刚1,2,杨景轩1,陈东良1,2,郝晓刚1(),官国清3   

  1. 1.太原理工大学化学化工学院,山西 太原 030024
    2.上海电气集团国控环球工程有限公司,山西 太原 030001
    3.日本弘前大学地域战略研究所,青森 030-0813,日本
  • 收稿日期:2021-11-03 修回日期:2022-02-09 出版日期:2022-05-05 发布日期:2022-05-24
  • 通讯作者: 张忠林,郝晓刚 E-mail:1062581355@qq.com;zlzhang@tyut.edu.cn;xghao@tyut.edu.cn
  • 作者简介:侯起旺(1995—),男,硕士研究生,1062581355@qq.com
  • 基金资助:
    国家自然科学基金项目(U1710101)

Design and evaluation of a coal-based polygeneration system with carbon cycle

Qiwang HOU1(),Zhaolun WEN1,Zhonglin ZHANG1(),Yegang LIU1,2,Jingxuan YANG1,Dongliang CHEN1,2,Xiaogang HAO1(),Guoqing GUAN3   

  1. 1.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Shanghai Electric Guokong Global Engineering Corporation, Taiyuan 030001, Shanxi, China
    3.Institute of Regional Innovation, Hirosaki University, Aomori 030-0813, Japan
  • Received:2021-11-03 Revised:2022-02-09 Published:2022-05-05 Online:2022-05-24
  • Contact: Zhonglin ZHANG,Xiaogang HAO E-mail:1062581355@qq.com;zlzhang@tyut.edu.cn;xghao@tyut.edu.cn

摘要:

将高密度三塔式循环流化床(TBCFB)应用于串并联综合型多联产系统,提出一种基于碳循环的流程与参数共优化的煤基多联产系统,促进低阶煤资源的高质高效转化。碳循环体现在两方面,一是系统以热解煤气循环作为热解气氛,提高了焦油产率,实现低阶煤高质化转化;二是在TBCFB使用富氧燃烧,提高了烟气中二氧化碳浓度,将烟气替代氮气直接用于燃气轮机发电工质,减少了氮气消耗。利用Aspen Plus对全系统进行模拟,对多联产系统进行物料、能量和?衡算,研究未反应合成气循环比和烟气注入量对过程的影响;以能量利用效率为优化目标,对煤基多联产碳循环系统的操作条件寻优。结果表明,动力单元注入气体使用烟气时,煤基多联产碳循环系统的能量利用效率达49.7%,高于用氮气作为热解气氛的传统煤基多联产系统,相比传统的单产系统,煤基多联产系统的能量可节约13%,对于年处理30万吨煤的系统,折合减少二氧化碳排放量为14.9万吨/年。

关键词: 碳循环, 煤基多联产, 能量分析, 计算机模拟, 集成, 优化设计

Abstract:

By applying the high-density triple bed circulating fluidized bed (TBCFB) to a series-parallel integrated polygeneration system, a coal-based polygeneration system based on carbon cycle process and parameters co-optimization is proposed, which can promote the high-quality and high-efficiency conversion of low-rank coal resources. The carbon cycle is embodied in two aspects. First, this system uses a pyrolysis gas cycle as the pyrolysis atmosphere, which can increase the tar yield and realize the high-quality conversion of low-rank coal.The second is the use of oxygen-enriched combustion in TBCFB, which can increase the concentration of carbon dioxide in the flue gas. While, using the flue gas instead of nitrogen directly as a working fluid for gas turbine power generation also reduces nitrogen consumption. The Aspen Plus is used here to investigate the influence of unreacted syngas circulation ratio and flue gas injection rate on the process via performing material, energy and exergy balance calculations for polygeneration systems. In addition, with energy efficiency as the optimization goal, suitable operating conditions are further found for the coal-based polygeneration system with carbon cycle. The results show that when the flue gas is used for gas injection in the power unit, the energy utilization efficiency of the coal-based polygeneration system with carbon cycle reaches 49.7%, which is higher than that of the traditional system using nitrogen as the pyrolysis atmosphere. Compared with the traditional unit production system, the coal-based polygeneration system can save 13% of energy, which is equivalent to reducing carbon dioxide emissions by 14.9×104 tons per year for a system with an annual capacity of 30×104 tons of coal.

Key words: carbon cycle, coal-based polygeneration system, energy analysis, computer simulation, integration, optimization design

中图分类号: 

  • TQ 015.2

图1

煤基多联产碳循环系统过程图"

表1

NMH工业分析和元素分析[16]"

Proximate analysis/ %(mass,d)Ultimate analysis/ %(mass,daf)LHV/(MJ/kg)
FCAVCHNSO
47.215.846.9974.355.130.720.3119.4923.45

图2

煤基多联产碳循环系统工艺流程"

表2

燃气轮机、蒸汽轮机参数"

参数
压气机绝热压缩效率/%91
透平绝热膨胀效率/%86
氧气温度/℃15
氧气压缩比/%29.6
汽轮机高压缸效率/%87
汽轮机中压缸效率/%90
汽轮机低压缸效率/%88
机械电机效率/%98

图3

碳循环多联产循环比对系统能量利用率的影响A—发电量与循环压缩机功耗、精馏能耗之差;B—系统能量利用率;C—甲醇能量"

图4

碳循环多联产烟气回注量对动力单元的影响A—NO x 排放量;B—动力单元输出电量;C—燃烧室出口温度"

图5

煤基多联产碳循环系统物料衡算(kg/h)"

表3

多联产碳循环系统主要物流模拟数据"

物流摩尔分数/%摩尔流量/ (kmol/h)质量流量/(t/h)温度/℃压力/MPa
H2+CH4COCO2N2O2H2OCH3OH
137.52000.1
259.127.75.47.71398.118.3406.5
367.930.02.11204.613.235.95.57
410.886.6462.014.365.33.5
593.61.25.1885.838.3843.80.1
63.63.46.885.3599.912.0593.75.0
754.60.63.041.81347.244.1227.80.1

图6

煤基多联产碳循环系统能量衡算(MW)"

图7

煤基多联产碳循环系统?衡算(MW)"

表4

两种多联产系统性能对比分析"

系统系统输入 总能量/MW系统输出 总功率/ MW系统输出 净功率/MW产生甲醇 能量/MW产生焦油 能量/MW系统能量 利用率/%?效率/%
传统煤基多联产244.2724.3218.4466.5332.1547.939
煤基多联产碳循环244.2726.3320.4563.3237.5749.740

表5

联产系统与单产系统性能"

项目输入输出系统输出能量/MW相对能量节约率/%
煤/(t/h)甲醇/(t/h)焦油/(t/h)
煤基多联产碳循环系统37.511.464.126.3313
煤气化联合循环发电系统11.8926.33
煤制甲醇系统24.3711.46
费托合成油系统6.834.1
1 An energy sector roadmap to carbon neutrality in China[EB/OL]. [2021-09]. .
2 Fushimi C, Wada T, Tsutsumi A. Inhibition of steam gasification of biomass char by hydrogen and tar[J]. Biomass and Bioenergy, 2011, 35(1): 179-185.
3 Bayarsaikhan B, Sonoyam N, Hosokai S, et al. Inhibition of steam gasification of char by volatiles in a fluidized bed under continuous feeding of a brown coal[J]. Fuel, 2006, 85(3): 340-349.
4 Zhang Y M, Wang Y, Cai L G, et al. Dual bed pyrolysis gasification of coal: process analysis and pilot test[J]. Fuel, 2013, 112: 624-634.
5 Tsutsumi A, Guan G Q, Fushimi C, et al. Flow behaviors in a high solid flux circulating fluidized bed composed of a riser, a downer and a bubbling fluidized bed[C]//Fluidization 􀃼: New Paradigm in Fluidization Engineering. Gyeong‐ju, Korea, 2010: 407-414.
6 Fushimi C, Guan G Q, Ishizuka M, et al. High-flux triple bed circulating fluidized bed (TBCFB) gasifier for exergy recuperative IGCC/IGFC[C]// International Conference on Circulating Fluidized Beds & Fluidization Technology-cfb. Sunriver, Oregon, USA, 2014.
7 郝晓刚, 王俊丽, 连文豪, 等. 一种热解气化装置和工艺: 104789245B[P]. 2017-12-05.
Hao X G, Wang J L, Lian W H, et al. Pyrolysis and gasification device and technology: 104789245B[P]. 2017-12-05.
8 王亚雄, 杨景轩, 张忠林, 等. 低阶煤热解-气化-燃烧TBCFB系统模拟及优化[J]. 化工学报, 2018, 69(8): 3596-3604.
Wang Y X, Yang J X, Zhang Z L, et al. TBCFB system simulation and optimization for pyrolysis-gasificationcombustion of low rank coal[J]. CIESC Journal, 2018, 69(8): 3596-3604.
9 陈东良, 张忠林, 杨景轩, 等. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945.
Chen D L, Zhang Z L, Yang J X, et al. Process simulation and energy saving analysis of CO2 capture by chemical absorption method based on self-heat recuperation[J]. CIESC Journal, 2019, 70(8): 2938-2945.
10 Li H Q, Hong H, Jin H G, et al. Analysis of a feasible polygeneration system for power and methanol production taking natural gas and biomass as materials[J]. Applied Energy, 2010, 87(9): 2846-2853.
11 林汝谋, 金红光, 高林. 化工动力多联产系统及其集成优化机理[J]. 热能动力工程, 2006, 21(4): 331-337, 433.
Lin R M, Jin H G, Gao L. Chemical engineering power polygeneration system and its integrated optimization mechanism[J]. Journal of Engineering for Thermal Energy and Power, 2006, 21(4): 331-337, 433.
12 岑建孟, 方梦祥, 王勤辉, 等. 煤分级利用多联产技术及其发展前景[J]. 化工进展, 2010, 29(S1): 705.
Cen J M, Fang M X, Wang Q H, et al. Development and prospect of coal staged conversion poly-generation technology[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 705.
13 刘敬尧, 何畅, 李璟, 等. 以合成气为核心的多联供多联产集成能源化工系统[J]. 煤炭学报, 2010, 35(2): 293-298.
Liu J Y, He C, Li J, et al. Syngas-based multi-fuel multi-product integrated energy and chemical system[J]. Journal of China Coal Society, 2010, 35(2): 293-298.
14 Gong M H, Yi Q, Huang Y, et al. Coke oven gas to methanol process integrated with CO2 recycle for high energy efficiency,economic benefits and low emissions[J]. Energy Conversion and Management, 2017, 133: 318-331.
15 Moore M J. NO x emission control in gas turbines for combined cycle gas turbine plant[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1997, 211(1): 43-52.
16 Wang Q, Wang M J, Wang H, et al. Effect of temperature and gasification gas from char on the reactions of volatiles generated from rapid pyrolysis of a low rank coal[J]. Fuel Processing Technology, 2021, 212: 106601.
17 Li X R, Jin X, Wang M J, et al. Effect of volatiles’ reaction on coking of tar during pyrolysis of Naomaohu coal in a downer-bed reactor[J]. Fuel Processing Technology, 2021, 212: 106623.
18 Jin X, Li X R, Kong J, et al. Insights into coke formation during thermal reaction of six different distillates from the same coal tar[J]. Fuel Processing Technology, 2021, 211: 106592.
19 Kuo P C, Wu W. Thermodynamic analysis of a combined heat and power system with CO2 utilization based on co-gasification of biomass and coal[J]. Chemical Engineering Science, 2016, 142: 201-214.
20 焦树建. 燃气-蒸汽联合循环的理论基础[M]. 北京: 清华大学出版社, 2003.
Jiao S J. Theoretical Basis of Combined Gas-steam Cycle[M]. Beijing: Tsinghua University Press, 2003.
21 Sun L, Smith R. Rectisol wash process simulation and analysis[J]. Journal of Cleaner Production, 2013, 39: 321-328.
22 Shi B, Wen F, Wu W. Performance evaluation of air-blown IGCC polygeneration plants using chemical looping hydrogen generation and methanol synthesis loop[J]. Energy, 2020, 200: 117564.
23 刘叶刚, 张忠林, 侯起旺, 等. TBCFB合成气制甲醇工艺过程的概念设计和计算机模拟[J]. 化工学报, 2021, 72(9): 4838-4846.
Liu Y G, Zhang Z L, Hou Q W, et al. Process design and simulation of synthesis gas to methanol in TBCFB system[J]. CIESC Journal, 2021, 72(9): 4838-4846.
24 Fu Q, Kansha Y, Song C F, et al. A cryogenic air separation process based on self-heat recuperation for oxy-combustion plants[J]. Applied Energy, 2016, 162: 1114-1121.
25 游卓. 富氧燃烧过程中的NO x 控制及其系统效率研究[D]. 杭州: 浙江大学, 2013.
You Z. NO x control and efficiency optimization of oxy-fuel combustion system[D]. Hangzhou: Zhejiang University, 2013.
26 Cengel Y A, Boles M A. Thermodynamics: An Engineering Approach[M]. New York: McGraw-Hill, 2009.
27 Zhang Y N, Zhao Y J, Gao X Y, et al. Energy and exergy analyses of syngas produced from rice husk gasification in an entrained flow reactor[J]. Journal of Cleaner Production, 2015, 95: 273-280.
28 Bilgen S, Kaygusuz K, Sari A. Second law analysis of various types of coal and woody biomass in Turkey[J]. Energy Sources, 2004, 26(11): 1083-1094.
29 王东亮, 冯宵, 李广播, 等. 基于流程模拟的㶲计算方法及其应用[J]. 计算机与应用化学, 2012, 29(9): 1069-1074.
Wang D L, Feng X, Li G B, et al. Exergy calculation method based on flowsheeting simulation and its application[J]. Computers and Applied Chemistry, 2012, 29(9): 1069-1074.
30 Al-Weshahi M A, Anderson A, Tian G H. Exergy efficiency enhancement of MSF desalination by heat recovery from hot distillate water stages[J]. Applied Thermal Engineering, 2013, 53(2): 226-233.
31 Duan W J, Yu Q B, Wang K, et al. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system[J]. Energy Conversion and Management, 2015, 100: 30-36.
32 Chen S Y, Lior N, Xiang W G. Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture[J]. Applied Energy, 2015, 146: 298-312.
33 Zhang Y N, Li B X, Li H T, et al. Exergy analysis of biomass utilization via steam gasification and partial oxidation[J]. Thermochimica Acta, 2012, 538: 21-28.
34 张亚宁, 李炳熙, 张波, 等. 生物质氧气气化和水蒸汽气化的能量分析及㶲分析[J]. 华北电力大学学报(自然科学版), 2012, 39(1): 64-69.
Zhang Y N, Li B X, Zhang B. Energy and exergy analysis of biomass gasification with oxygen or steam[J]. Journal of North China Electric Power University(Natural Science Edition), 2012, 39(1): 64-69.
35 于戈文, 王延铭, 杨小丽, 等. 基于CO2捕集的煤基费托合成油-动力多联产系统㶲分析[J]. 化工进展, 2017, 36(10): 3682-3689.
Yu G W, Wang Y M, Yang X L, et al. Exergy analysis for the coal-based polygeneration system of FT syncrudes-power with CO2 capture[J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3682-3689.
36 Reddy B R, Shravani B, Das B, et al. Microwave-assisted and analytical pyrolysis of coking and non-coking coals: comparison of tar and char compositions[J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104614.
37 He S, Li S, Gao L. Proposal and energy saving analysis of novel methanol-electricity polygeneration system based on staged coal gasification method[J]. Energy Conversion and Management, 2021, 233(2): 113931.
38 黄宏, 杨思宇. 一种低能耗捕集CO2煤基甲醇和电力联产过程设计[J]. 化工学报, 2017, 68(10): 3860-3869.
Huang H, Yang S Y. Design of a coal based methanol and power polygeneration process with low energy consumption for CO2 capture[J]. CIESC Journal, 2017, 68(10): 3860-3869.
39 范江, 王巧荣, 王进, 等. 循环比对甲醇-电的多联产系统能耗影响的分析[J]. 化学工程, 2009, 37(4): 68-71, 78.
Fan J, Wang Q R, Wang J, et al. Analysis for effect of recycle ratio on energy consumption of methanol-electric polygeneration system[J]. Chemical Engineering(China), 2009, 37(4): 68-71, 78.
40 黄雪丽. IGCC电厂脱硝方式一体化研究[D]. 北京: 华北电力大学, 2014.
Huang X L. Integrated study on denitraton methods of IGCC plant[D]. Beijing: North China Electric Power University, 2014.
41 林汝谋, 金红光, 高林. 化工动力多联产系统评价准则问题研究综述[J]. 燃气轮机技术, 2012, 25(4): 1-14.
Lin R M, Jin H G, Gao L. Review on the evaluation criteria of polygeneration system for power and chemical production[J]. Gas Turbine Technology, 2012, 25(4): 1-14.
42 Fan Y F, Ye Q, Cen H, et al. Design and optimization of reactive distillation processes for synthesis of isopropanol based on self-heat recuperation technology[J]. Chemical Engineering Research and Design, 2019, 147: 171-186.
[1] 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045.
[2] 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087.
[3] 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949.
[4] 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973.
[5] 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488.
[6] 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679.
[7] 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274.
[8] 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053.
[9] 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806.
[10] 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73.
[11] 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962.
[12] 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061.
[13] 陈昊, 陈鹏忠, 彭孝军. 金属基极紫外光刻胶[J]. 化工学报, 2022, 73(8): 3307-3325.
[14] 魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108.
[15] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!