化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 17-25.DOI: 10.11949/0438-1157.20241390
收稿日期:2024-12-02
修回日期:2024-12-10
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
谈莹莹
作者简介:臧子晴(1999—),女,硕士研究生,zangzq0930@163.com
基金资助:
Ziqing ZANG(
), Xiuzhen LI, Yingying TAN(
), Xiaoqing LIU
Received:2024-12-02
Revised:2024-12-10
Online:2025-06-25
Published:2025-06-26
Contact:
Yingying TAN
摘要:
为了提高传统两级分离自复叠制冷循环(TSARC)的效率并达到更低的制冷温度,设计了一种配备分凝器的两级分离自复叠制冷循环,选用非共沸混合工质R1150/R600a作为制冷剂。在此基础上,建立了带有双分凝器的两级分离自复叠制冷循环热力学模型,并对基于第一级分凝器的两级分离自复叠制冷循环(FRARC)、基于第二级分凝器的两级分离自复叠制冷循环(SFARC)以及双分凝器的两级分离自复叠制冷循环(TFARC)的热力学特性进行了对比分析。研究结果显示,存在最优的制冷剂组分配比,使得上述3种带分凝器的两级分离自复叠制冷循环均能达到最大制冷性能系数(COP)。在冷凝器出口温度为30℃、蒸发器出口温度为-90℃的条件下,FRARC、SFARC和TFARC循环的最大COP较TSARC循环分别下降了4.9%、6.6%和16.3%。而且它们所能达到的最低制冷温度分别为-98、-98和-100℃,均低于TSARC循环所能达到的制冷温度。由此可见,分凝作用虽然未能提升两级分离自复叠制冷循环的制冷效率,但有助于实现更低的制冷温度。
中图分类号:
臧子晴, 李修真, 谈莹莹, 刘晓庆. 分凝器对两级分离自复叠制冷循环特性影响研究[J]. 化工学报, 2025, 76(S1): 17-25.
Ziqing ZANG, Xiuzhen LI, Yingying TAN, Xiaoqing LIU. Investigation on effect of fractionation on performance of two-stage separation-based auto-cascade refrigeration cycle[J]. CIESC Journal, 2025, 76(S1): 17-25.
| 部件 | 热力学模型 | |
|---|---|---|
| 质量守恒 | 能量守恒 | |
| 气液分离器1 | m3 = m4 + m7 | m3h3 = m4h4 + m7h7 |
| 气液分离器2 | m8 = m9 + m11 | m8h8 = m9h9 + m11h11 |
| 蒸发冷凝器1 | m8a = m8 m5 = m6 | m8a(h8a - h8)= m5(h5 - h6) |
| 蒸发冷凝器2 | m8b = m12m15 = m16 | m8b(h8b - h12)= m15(h15 - h16) |
| 节流阀1 | m4 = m5 | h4 = h5 |
| 节流阀2 | m9 = m10 | h9 = h10 |
| 节流阀3 | m12 = m13 | h12 = h13 |
| 混合过程1 | m15 = m10 + m14 | m15h15 = m10h10 + m14h14 |
| 混合过程2 | m1 = m6a + m6b | m1h1 = m6ah6a + m6bh6b |
表1 TFARC循环其他部件的热力学模型
Table 1 Thermodynamic models of other components for TFARC cycle
| 部件 | 热力学模型 | |
|---|---|---|
| 质量守恒 | 能量守恒 | |
| 气液分离器1 | m3 = m4 + m7 | m3h3 = m4h4 + m7h7 |
| 气液分离器2 | m8 = m9 + m11 | m8h8 = m9h9 + m11h11 |
| 蒸发冷凝器1 | m8a = m8 m5 = m6 | m8a(h8a - h8)= m5(h5 - h6) |
| 蒸发冷凝器2 | m8b = m12m15 = m16 | m8b(h8b - h12)= m15(h15 - h16) |
| 节流阀1 | m4 = m5 | h4 = h5 |
| 节流阀2 | m9 = m10 | h9 = h10 |
| 节流阀3 | m12 = m13 | h12 = h13 |
| 混合过程1 | m15 = m10 + m14 | m15h15 = m10h10 + m14h14 |
| 混合过程2 | m1 = m6a + m6b | m1h1 = m6ah6a + m6bh6b |
| 参数 | 值 |
|---|---|
| 压缩机压比Pr | 12 |
| 压缩机等熵效率 | 0.71 |
| 冷凝器出口温度Tc/℃ | 18~58 |
| 冷凝器出口干度 | 0.65 |
| 分凝器出口干度 | 0.58~0.98 |
| 蒸发器出口温度Te/℃ | -100~-60 |
| 系统各部分压降/kPa | 0 |
| 质量流量/(kg·s-1) | 0.01 |
表2 Aspen Plus全局设计参数
Table 2 Aspen Plus global design parameters
| 参数 | 值 |
|---|---|
| 压缩机压比Pr | 12 |
| 压缩机等熵效率 | 0.71 |
| 冷凝器出口温度Tc/℃ | 18~58 |
| 冷凝器出口干度 | 0.65 |
| 分凝器出口干度 | 0.58~0.98 |
| 蒸发器出口温度Te/℃ | -100~-60 |
| 系统各部分压降/kPa | 0 |
| 质量流量/(kg·s-1) | 0.01 |
| ZR134a/ZR23/ZR14 | Qe/kW | COP | ||||
|---|---|---|---|---|---|---|
| TSARC | 文献[ | 误差/% | TSARC | 文献[ | 误差/% | |
| 0.51/0.19/0.30 | 0.62 | 0.62 | 0 | 0.2292 | 0.2290 | 0.087 |
| 0.51/0.13/0.36 | 0.75 | 0.75 | 0 | 0.2701 | 0.2700 | 0.037 |
| 0.55/0.19/0.26 | 0.51 | 0.51 | 0 | 0.2130 | 0.2130 | 0 |
| 0.48/0.22/0.30 | 0.64 | 0.64 | 0 | 0.2175 | 0.2170 | 0.230 |
表3 TSARC模拟结果与文献[9]对比验证
Table 3 Comparisons of present TSARC cycle results with results from Ref.[9]
| ZR134a/ZR23/ZR14 | Qe/kW | COP | ||||
|---|---|---|---|---|---|---|
| TSARC | 文献[ | 误差/% | TSARC | 文献[ | 误差/% | |
| 0.51/0.19/0.30 | 0.62 | 0.62 | 0 | 0.2292 | 0.2290 | 0.087 |
| 0.51/0.13/0.36 | 0.75 | 0.75 | 0 | 0.2701 | 0.2700 | 0.037 |
| 0.55/0.19/0.26 | 0.51 | 0.51 | 0 | 0.2130 | 0.2130 | 0 |
| 0.48/0.22/0.30 | 0.64 | 0.64 | 0 | 0.2175 | 0.2170 | 0.230 |
| 1 | 马泽昆, 张华, 刘煜森, 等. 微型自复叠制冷系统性能的实验研究[J]. 制冷技术, 2018, 38(5): 14-17. |
| Ma Z K, Zhang H, Liu Y S, et al. Experimental study of performance of micro auto-cascade refrigeration system[J]. Chinese Journal of Refrigeration Technology, 2018, 38(5): 14-17. | |
| 2 | 苑佳佳, 王林, 谈莹莹, 等. 自复叠双压缩制冷循环特性研究[J]. 工程热物理学报, 2022, 43(11): 2886-2892. |
| Yuan J J, Wang L, Tan Y Y, et al. Study on an auto-cascade parallel-compression refrigeration cycle[J]. Journal of Engineering Thermophysics, 2022, 43(11): 2886-2892. | |
| 3 | Gurudath Nayak H, Venkatarathnam G. Performance of an auto refrigerant cascade refrigerator operating in gas refrigerant supply (GRS) mode with nitrogen–hydrocarbon and argon–hydrocarbon refrigerants[J]. Cryogenics, 2009, 49(7): 350-359. |
| 4 | Li Y L, Liu G Q, Chen Q, et al. Progress of auto-cascade refrigeration systems performance improvement: composition separation, shift and regulation[J]. Renewable and Sustainable Energy Reviews, 2023, 187: 113664. |
| 5 | Rodríguez-Jara E Á, Sánchez-de-la-Flor F J, Expósito-Carrillo J A, et al. Thermodynamic analysis of auto-cascade refrigeration cycles, with and without ejector, for ultra low temperature freezing using a mixture of refrigerants R600a and R1150[J]. Applied Thermal Engineering, 2022, 200: 117598. |
| 6 | Qin Y B, Li N X, Zhang H, et al. Energy and exergy performance evaluation of a three-stage auto-cascade refrigeration system using low-GWP alternative refrigerants[J]. International Journal of Refrigeration, 2021, 126: 66-75. |
| 7 | Sobieraj M, Rosiński M. High phase-separation efficiency auto-cascade system working with a blend of carbon dioxide for low-temperature isothermal refrigeration[J]. Applied Thermal Engineering, 2019, 161: 114149. |
| 8 | 王林, 崔晓龙, 谈莹莹, 等. 混合工质充注量/配比对自复叠制冷循环特性影响[J]. 工程热物理学报, 2011, 32(4): 565-568. |
| Wang L, Cui X L, Tan Y Y, et al. Influences of charge and composition ratio of mixed refrigerants on performances of autocascade refrigeration cycles[J]. Journal of Engineering Thermophysics, 2011, 32(4): 565-568. | |
| 9 | He Y N, Wu H H, Xu K, et al. Theoretical performance comparison for a regenerator-enhanced three-stage auto-cascade refrigeration system using different zeotropic mixed refrigerants[J]. Energy and Buildings, 2023, 283: 112815. |
| 10 | He Y N, Wu H H, Liu Y Y, et al. Theoretical performance comparison for two-stage auto-cascade refrigeration system using hydrocarbon refrigerants[J]. International Journal of Refrigeration, 2022, 142: 27-36. |
| 11 | Wang Q, Li D H, Wang J P, et al. Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor–liquid separators and environmentally benign binary refrigerants[J]. Applied Energy, 2013, 112: 949-955. |
| 12 | 张书春, 张华, 赵巍. 一种多级自复叠制冷循环系统中制冷剂的成分分析[J]. 制冷技术, 2013, 33(2): 10-13. |
| Zhang S C, Zhang H, Zhao W. Component analysis of refrigerant in multi-stage auto-cascade refrigeration cycle system[J]. Chinese Journal of Refrigeration Technology, 2013, 33(2): 10-13. | |
| 13 | 张绍志, 王剑锋, 张红线, 等. 具有精馏装置的自动复叠制冷循环分析[J]. 工程热物理学报, 2001, 22(1): 25-27. |
| Zhang S Z, Wang J F, Zhang H X, et al. Analysis of an auto-refrigerating cascade system utilizing a rectifying column[J]. Journal of Engineering Thermophysics, 2001, 22(1): 25-27. | |
| 14 | 王勤, 陈光明. 多元混合工质精馏循环的优化计算与实验研究[J]. 低温工程, 2003(3): 42-48. |
| Wang Q, Chen G M. Optimization calculation and experimental study on multi-component rectification cycles using mixed refrigerants[J]. Cryogenics, 2003(3): 42-48. | |
| 15 | Zhang L, Xu S M, Du P, et al. Experimental and theoretical investigation on the performance of CO2/propane auto-cascade refrigerator with a fractionation heat exchanger[J]. Applied Thermal Engineering, 2015, 87: 669-677. |
| 16 | 芮胜军, 张华, 张庆钢, 等. 两级分凝自复叠制冷系统特性[J]. 化工学报, 2013, 64(6): 2029-2035. |
| Rui S J, Zhang H, Zhang Q G, et al. Characteristics of two-stage segregation auto-cascade refrigeration system[J]. CIESC Journal, 2013, 64(6): 2029-2035. | |
| 17 | 刘建丽, 公茂琼, 吴剑峰, 等. 一种新型分凝分离式混合工质内复叠节流制冷机的实验研究[J]. 低温与超导, 2001, 29(2): 6-11. |
| Liu J L, Gong M Q, Wu J F, et al. Experimental research on a new type of mixed-refrigerant fractionation refrigeration cycle[J]. Cryogenics and Super Conductivity, 2001, 29(2): 6-11. | |
| 18 | Li Y L, Chen Q, Liu G Q, et al. Energy, modified exergy, exergo-economic and exergo-environmental analyses of a separation-enhanced auto-cascade refrigeration cycle[J]. Energy Conversion and Management, 2024, 299: 117801. |
| 19 | Liu J R, Liu Y, Yu J L, et al. Thermodynamic analysis of a novel ejector-enhanced auto-cascade refrigeration cycle[J]. Applied Thermal Engineering, 2022, 200: 117636. |
| 20 | Tan Y Y, Li X Z, Wang L, et al. Thermodynamic performance of the fractionated auto-cascade refrigeration cycle coupled with two-phase ejector using R1150/R600a at -80℃ temperature level[J]. Energy, 2023, 281: 128328. |
| 21 | Chen J H, Zhang Z Y, Wang D B, et al. Comparative study on four autocascade refrigeration cycles based on energy, exergy, economic and environmental (4E) analyses[J]. Energy Conversion and Management, 2023, 288: 117129. |
| 22 | Bai T, Yan G, Yu J L. Influence of internal heat exchanger position on the performance of ejector-enhanced auto-cascade refrigeration cycle for the low-temperature freezer[J]. Energy, 2022, 238: 121803. |
| 23 | Tan Y Y, Yuan J J, Wang L, et al. Proposal and performance study on a component-based double-stage compression auto-cascade refrigeration cycle[J]. Energy Conversion and Management, 2023, 276: 116566. |
| 24 | 吴啸, 刘金平, 许雄文, 等. 自复叠制冷循环试验中的特殊现象讨论[J]. 制冷技术, 2011, 31(1): 6-10. |
| Wu X, Liu J P, Xu X W, et al. Discussion of special phenomena in auto-cascade refrigeration cycle test[J]. Refrigeration Technology, 2011, 31(1): 6-10. | |
| 25 | 李银龙, 刘国强, 刘嘉瑞, 等. 自复叠制冷系统及其组分分离、迁移与调控研究进展[J]. 制冷学报, 2024, 45(1): 1-17. |
| Li Y L, Liu G Q, Liu J R, et al. Review of research progress on auto-cascade refrigeration systems and component separation, migration, and regulation[J]. Journal of Refrigeration, 2024, 45(1): 1-17. | |
| 26 | Yan G, Hu H, Yu J L. Performance evaluation on an internal auto-cascade refrigeration cycle with mixture refrigerant R290/R600a[J]. Applied Thermal Engineering, 2015, 75: 994-1000. |
| 27 | Yoon W J, Seo K, Chung H J, et al. Performance optimization of a Lorenz–Meutzner cycle charged with hydrocarbon mixtures for a domestic refrigerator-freezer[J]. International Journal of Refrigeration, 2012, 35(1): 36-46. |
| 28 | Jin X, Zhang X S. A new evaluation method for zeotropic refrigerant mixtures based on the variance of the temperature difference between the refrigerant and heat transfer fluid[J]. Energy Conversion and Management, 2011, 52(1): 243-249. |
| 29 | 王雨, 王林, 汪庆军. 非共沸混合工质自复叠制冷循环研究进展[J]. 制冷与空调, 2011, 25(1): 73-77, 101. |
| Wang Y, Wang L, Wang Q J. Research process on non-azeotropic mixtures auto-cascade refrigeration cycle[J]. Refrigeration & Air Conditioning, 2011, 25(1): 73-77, 101. | |
| 30 | 谈莹莹, 刘晓庆, 王林, 等. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
| Tan Y Y, Liu X Q, Wang L, et al. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle[J]. CIESC Journal, 2023, 74(S1): 213-222. |
| [1] | 时任泽, 丁秋燕, 袁振军, 那健, 刘见华, 郭树虎, 赵雄, 李洪, 高鑫. 4N电子级二乙氧基甲基硅烷的纯化技术研究[J]. 化工学报, 2025, 76(5): 2186-2197. |
| [2] | 胡嘉朗, 姜明源, 金律铭, 张永刚, 胡鹏, 纪红兵. 机器学习辅助MOFs高通量计算筛选及气体分离研究进展[J]. 化工学报, 2025, 76(5): 1973-1996. |
| [3] | 李紫鹃, 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷, 喻发全. 分子模拟研究三维扭曲催化芳烃-降冰片烯环化聚合物膜的CO2/N2分离机理[J]. 化工学报, 2025, 76(5): 2348-2357. |
| [4] | 李艳, 雷美丽, 李鑫钢. 基于分离性能的顺序式模拟移动床结构调控策略[J]. 化工学报, 2025, 76(5): 2219-2229. |
| [5] | 齐昊, 王玉杰, 李申辉, 邹琦, 刘轶群, 赵之平. 双金属Co/Zn-ZIFs中C3H6和C3H8吸附和扩散行为分子模拟研究[J]. 化工学报, 2025, 76(5): 2313-2326. |
| [6] | 陈建兵, 常昊, 高明, 邢兵, 张磊, 刘奇磊. 基于反应模板与分子动力学的胺基相变吸收剂分相预测方法[J]. 化工学报, 2025, 76(5): 2387-2396. |
| [7] | 朱峰, 赵跃, 马凤翔, 刘伟. 改性UIO-66对SF6/N2混合气体及其分解产物的吸附特性[J]. 化工学报, 2025, 76(4): 1604-1616. |
| [8] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [9] | 陶智能, 邱彤, 王保国. 阴离子交换膜电解水制氢稳态建模[J]. 化工学报, 2025, 76(4): 1711-1721. |
| [10] | 刘淑丽, 周文豪, 张少良, 沈永亮. 太阳能直接吸收相变集-蓄热器的放热特性研究[J]. 化工学报, 2025, 76(4): 1722-1730. |
| [11] | 刘润健, 林刚, 张玲, 徐栋, 李明, 韩路长. 考虑气泡表面变形影响的靠近-减薄过程耦合模型[J]. 化工学报, 2025, 76(4): 1504-1512. |
| [12] | 许成城, 邵索拉, 魏文建, 郑旭. 多工况下直凝式蓄热型铝制辐射板换热器供暖性能研究[J]. 化工学报, 2025, 76(4): 1545-1558. |
| [13] | 贾文龙, 肖欢, 冷翔宇, 黄巧竞, 刘程玮, 吴瑕. 原油储罐重质沉积物超声波空化微射流清洗实验及数值模拟[J]. 化工学报, 2025, 76(3): 1288-1296. |
| [14] | 王宗廷, 王丽丽, 孙晓岩, 夏力, 陶少辉, 项曙光. 基于简化相平衡关联式的高效简捷精馏塔模型[J]. 化工学报, 2025, 76(3): 1133-1142. |
| [15] | 周印洁, 吉思蓓, 何松阳, 吉旭, 贺革. 机器学习辅助高通量筛选金属有机骨架用于富碳天然气中分离CO2[J]. 化工学报, 2025, 76(3): 1093-1101. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号