化工学报 ›› 2025, Vol. 76 ›› Issue (3): 1133-1142.DOI: 10.11949/0438-1157.20241007
王宗廷(
), 王丽丽, 孙晓岩, 夏力, 陶少辉(
), 项曙光
收稿日期:2024-09-06
修回日期:2024-10-17
出版日期:2025-03-25
发布日期:2025-03-28
通讯作者:
陶少辉
作者简介:王宗廷(2000—),男,硕士研究生,1870979646@qq.com
基金资助:
Zongting WANG(
), Lili WANG, Xiaoyan SUN, Li XIA, Shaohui TAO(
), Shuguang XIANG
Received:2024-09-06
Revised:2024-10-17
Online:2025-03-25
Published:2025-03-28
Contact:
Shaohui TAO
摘要:
化工单元的准确快速模拟是化工数字孪生成功实施的关键之一。精馏塔作为最复杂和应用最广泛的化工单元之一,其高效准确求解对于实现化工装置数字孪生具有重要意义。传统精馏塔模型则由于规模较大和热力学性质计算耗时等原因,形成了制约其数字孪生的瓶颈。为此,在简捷精馏塔模型基础上,引入了组分相平衡常数与温度间关联式,以简化相平衡计算,并基于此提出了烃类精馏塔的高效简捷精馏塔模型。最后,通过实际工业中的精馏塔进行验证,结果表明所提出的高效简捷精馏塔模型能有效减少计算耗时,为精馏塔的数字孪生建模奠定了基础。
中图分类号:
王宗廷, 王丽丽, 孙晓岩, 夏力, 陶少辉, 项曙光. 基于简化相平衡关联式的高效简捷精馏塔模型[J]. 化工学报, 2025, 76(3): 1133-1142.
Zongting WANG, Lili WANG, Xiaoyan SUN, Li XIA, Shaohui TAO, Shuguang XIANG. Simplified phase equilibrium correlation-based efficient and short-cut distillation column model[J]. CIESC Journal, 2025, 76(3): 1133-1142.
| C3 | 11.4165 | -10.8881 |
| C3= | 11.0834 | -11.0999 |
| i-C4 | 17.0333 | -13.7702 |
| n-C4 | 16.7055 | -13.1724 |
| C4= | 16.3690 | -13.4467 |
| i-C4= | 16.1458 | -13.2884 |
| t-C4= | 16.5793 | -13.4199 |
| cis-C4= | 17.4739 |
表 1 参数回归值
Table 1 Parameter regression value
| C3 | 11.4165 | -10.8881 |
| C3= | 11.0834 | -11.0999 |
| i-C4 | 17.0333 | -13.7702 |
| n-C4 | 16.7055 | -13.1724 |
| C4= | 16.3690 | -13.4467 |
| i-C4= | 16.1458 | -13.2884 |
| t-C4= | 16.5793 | -13.4199 |
| cis-C4= | 17.4739 |
| 塔 | 温度/K | 相对误差% | |||
|---|---|---|---|---|---|
| 严格精馏塔 | 原始AEM | 高效AEM | 原始AEM | 高效AEM | |
| 塔顶 | 417.58 | 419.70 | 420.10 | -0.51 | -0.60 |
| 塔底 | 501.77 | 505.64 | 506.42 | -0.77 | -0.93 |
表2 初馏塔塔顶塔底温度对比
Table 2 Temperature of the primary column
| 塔 | 温度/K | 相对误差% | |||
|---|---|---|---|---|---|
| 严格精馏塔 | 原始AEM | 高效AEM | 原始AEM | 高效AEM | |
| 塔顶 | 417.58 | 419.70 | 420.10 | -0.51 | -0.60 |
| 塔底 | 501.77 | 505.64 | 506.42 | -0.77 | -0.93 |
| 1 | Singh M, Fuenmayor E, Hinchy E P, et al. Digital twin: origin to future[J]. Applied System Innovation, 2021, 4(2): 36. |
| 2 | 陶飞, 张贺, 戚庆林, 等. 数字孪生十问: 分析与思考[J]. 计算机集成制造系统, 2020, 26(1): 1-17. |
| Tao F, Zhang H, Qi Q L, et al. Ten questions towards digital twin: analysis and thinking[J]. Computer Integrated Manufacturing Systems, 2020, 26(1): 1-17. | |
| 3 | Pan Y H, Qu T, Wu N Q, et al. Digital twin based real-time production logistics synchronization system in a multi-level computing architecture[J]. Journal of Manufacturing Systems, 2021, 58: 246-260. |
| 4 | Jana A K. Chemical Process Modelling and Computer Simulation[M]. PHI Learning Pvt. Ltd., 2018: 3-33. |
| 5 | Schäfer P, Caspari A, Schweidtmann A M, et al. The potential of hybrid mechanistic/data-driven approaches for reduced dynamic modeling: application to distillation columns[J]. Chemie Ingenieur Technik, 2020, 92(12): 1910-1920. |
| 6 | Zendehboudi S, Rezaei N, Lohi A. Applications of hybrid models in chemical, petroleum, and energy systems: a systematic review[J]. Applied Energy, 2018, 228: 2539-2566. |
| 7 | 张梦轩, 刘洪辰, 王敏, 等. 化工过程的智能混合建模方法及应用[J]. 化工进展, 2021, 40(4): 1765-1776. |
| Zhang M X, Liu H C, Wang M, et al. Intelligence hybrid modeling method and applications in chemical process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1765-1776. | |
| 8 | Ghosh D, Hermonat E, Mhaskar P, et al. Hybrid modeling approach integrating first-principles models with subspace identification[J]. Industrial & Engineering Chemistry Research, 2019, 58(30): 13533-13543. |
| 9 | Mcbride K, Sanchez Medina E I, Sundmacher K. Hybrid semi-parametric modeling in separation processes: a review[J]. Chemie Ingenieur Technik, 2020, 92(7): 842-855. |
| 10 | Sansana J, Joswiak M N, Castillo I, et al. Recent trends on hybrid modeling for Industry 4.0[J]. Computers & Chemical Engineering, 2021, 151: 107365. |
| 11 | Kremser A. Theoretical analysis of absorption process[J]. National Petroleum News, 1930, 22(21): 43-49. |
| 12 | Edmister W C. Absorption and stripping-factor functions for distillation calculation by manual-and digital-computer methods[J]. AIChE Journal, 1957, 3(2): 165-171. |
| 13 | Kamath R S, Grossmann I E, Biegler L T. Aggregate models based on improved group methods for simulation and optimization of distillation systems[J]. Computers & Chemical Engineering, 2010, 34(8): 1312-1319. |
| 14 | Ecker A M, Thomas I, Häfele M, et al. Development of a new column shortcut model and its application in process optimisation[J]. Chemical Engineering Science, 2019, 196: 538-551. |
| 15 | Kender R, Stops L, Krespach V, et al. Reduced order modeling of a pressure column of an air separation unit using the dynamic edmister method[J]. Computers & Chemical Engineering, 2023, 174: 108250. |
| 16 | Lemmon E W, Jacobsen R T. A generalized model for the thermodynamic properties of mixtures[J]. International Journal of Thermophysics, 1999, 20(3): 825-835. |
| 17 | Zhang T, Zhang Y H, Katterbauer K, et al. Phase equilibrium in the hydrogen energy chain[J]. Fuel, 2022, 328: 125324. |
| 18 | Nichita D V. A reduction method for phase equilibrium calculations with cubic equations of state[J]. Brazilian Journal of Chemical Engineering, 2006, 23(3): 427-434. |
| 19 | Kamath R S, Biegler L T, Grossmann I E. An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization[J]. Computers & Chemical Engineering, 2010, 34(12): 2085-2096. |
| 20 | Fan J Y, Pan J Y. An improved trust region algorithm for nonlinear equations[J]. Computational Optimization and Applications, 2011, 48(1): 59-70. |
| 21 | Ghafoori M J, Aghamiri S F, Talaie M R. A new empirical K-value equation for reservoir fluids[J]. Fuel, 2012, 98: 236-242. |
| 22 | Ahmed T. Reservoir Engineering Handbook[M]. Gulf Professional Publishing, 2018: 1109-1218. |
| 23 | Hoffman A E, Crump J S, Hocott C R. Equilibrium constants for a gas-condensate system[J]. Journal of Petroleum Technology, 1953, 5(1): 1-10. |
| 24 | Michelsen M L. Simplified flash calculations for cubic equations of state[J]. Industrial & Engineering Chemistry Process Design and Development, 1986, 25(1): 184-188. |
| 25 | Leibovici C, Stenby E H, Knudsen K. A consistent procedure for pseudo-component delumping[J]. Fluid Phase Equilibria, 1996, 117(1/2): 225-232. |
| 26 | Rabeau P, Gani R, Leibovici C. An efficient initialization procedure for simulation and optimization of large distillation problems[J]. Industrial & Engineering Chemistry Research, 1997, 36(10): 4291-4298. |
| 27 | Westerberg A W, Berna T J. Decomposition of very large-scale Newton-Raphson based flowsheeting problems[J]. Computers & Chemical Engineering, 1978, 2(1): 61-63. |
| 28 | Dennis Jr J E, El-Alem M, Williamson K. A trust-region approach to nonlinear systems of equalities and inequalities[J]. SIAM Journal on Optimization, 1999, 9(2): 291-315. |
| 29 | Edmister W C. Design for hydrocarbon absorption and stripping[J]. Industrial & Engineering Chemistry, 1943, 35(8): 837-839. |
| 30 | Wächter A, Biegler L T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[J]. Mathematical Programming, 2006, 106(1): 25-57. |
| 31 | Wilson G M. A modified Redlish-Kwong equation of state, application to general physical data calculation[C]// 65th National AICHE Metting. Cleveland, 1969. |
| [1] | 任超, 王凯, 韩洁, 阳春华. 事件-时间触发的慢时变工业过程动态调度方法[J]. 化工学报, 2025, 76(1): 256-265. |
| [2] | 卢昕悦, 陈锐莹, 姜夏雪, 梁海瑞, 高歌, 叶正芳. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
| [3] | 李洪瑞, 黄纯西, 洪小东, 廖祖维, 王靖岱, 阳永荣. 基于自适应变步长同伦法的循环流程收敛算法[J]. 化工学报, 2024, 75(7): 2604-2612. |
| [4] | 黄志鸿, 周利, 柴士阳, 吉旭. 耦合加氢装置优化的多周期氢网络集成[J]. 化工学报, 2024, 75(5): 1951-1965. |
| [5] | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
| [6] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
| [7] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
| [8] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
| [9] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
| [10] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
| [11] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
| [12] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
| [13] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
| [14] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
| [15] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号