• •
胡嘉朗(), 姜明源(
), 金律铭, 张永刚, 胡鹏(
), 纪红兵(
)
收稿日期:
2024-10-31
修回日期:
2024-12-12
出版日期:
2024-12-13
通讯作者:
胡鹏,纪红兵
作者简介:
胡嘉朗(1999—),男,博士研究生,1803228068@qq.com基金资助:
Jialang HU(), Mingyuan JIANG(
), Lvming JIN, Yonggang ZHANG, Peng HU(
), Hongbing JI(
)
Received:
2024-10-31
Revised:
2024-12-12
Online:
2024-12-13
Contact:
Peng HU, Hongbing JI
摘要:
金属有机框架(metal organic frameworks, MOFs)材料,以其高比表面积、大孔体积以及结构可调等特性,在气体储存、吸附分离以及催化等诸多领域引起了广泛关注。近年来MOFs的数量呈现爆发式增长态势,这使得针对特定应用场景探寻合适的MOFs成为一项极具挑战性的任务。在此情形下,高通量计算筛选(high-throughput computing screening, HTCS)成为从海量材料中筛选出高性能目标MOFs最为有效的研究方法。HTCS会产生大量多维的数据,而这些数据可进一步用于机器学习(machine learning, ML)训练。最近,将ML应用到MOFs的HTCS中成为新的热点,它不仅可以揭示材料潜在的结构-性能关系,还可以洞悉它们在不同应用中的性能变化,尤其是在气体储存和分离方面。在这篇综述中,我们着重介绍了ML辅助HTCS在MOFs气体分离领域的最新技术进展,系统分析了在探寻高性能MOFs时ML与HTCS相互协同以提升筛选效率的内在机制,深入探讨了在这一新领域中呈现出的机遇和挑战。
中图分类号:
胡嘉朗, 姜明源, 金律铭, 张永刚, 胡鹏, 纪红兵. 机器学习辅助MOFs高通量计算筛选及气体分离研究进展[J]. 化工学报, DOI: 10.11949/0438-1157.20241229.
Jialang HU, Mingyuan JIANG, Lvming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research[J]. CIESC Journal, DOI: 10.11949/0438-1157.20241229.
图1 文献统计图及时间轴。(a) 使用“机器学习”作为关键词时的文献统计; (b) 以“金属有机框架”为关键词时的文献统计; (c) 以“机器学习”和“金属有机框架”为关键词时的文献统计; (d) MOFs计算研究中主要里程碑的时间轴[44]
Fig.1 Chart of statistics of the literature and timeline. (a) The literature statistics when using “machine learning” as a keyword; (b) The literature statistics when using “metal organic frameworks” as keywords; (c) The statistics of the literature when using “machine learning” and “metal organic frameworks” as keywords; (d) A timeline of major milestones in computational MOFs research[44]
图3 (a) 不同金属在选定的MOF子集中的概率(基于WSRD); (b) 在选定的MOF子集中出现不同金属类型的概率。内圈为TOP1000 MOF集,外圆表示所有MOF; (c) 不同过渡金属在选定子集内的可能性[67]; (d) 用于O2/N2吸附分离的高性能bio-MOFs HTS的ML辅助MS流程图[68]
Fig.3 (a) Probabilities of different metals being in the selected MOF subset (based on WSRD); (b) Probability of different metal types being in the selected MOF subset. The inner circle indicates the TOP1000 MOF set, the outer circle indicates all MOFs; (c) Probability of different transition metals being in the selected subset[67]; (d) Flowchart of ML-assisted molecular simulation for high-throughput screening of high-performance desired bio-MOFs for O2/N2 adsorption separation[68]
图5 (a) CH4/CO2系统中不同水平MOF数据库中不同描述符的RI[76]; (b) 人工神经网络的体系结构[77]
Fig.5 (a) RI of different descriptors for different levels of MOFs datasets at all levels in the CH4/CO2 system[76]; (b) Architecture of the artificial neural networks[77]
图6 (a) 用于训练ML模型以预测CO2/CO选择性和吸附量的化学描述符的示意图; (b) CO2/CO选择性、特征与CO2(左)或CO(右)负载之间相关性的示意图; (c) 特征与吸附性质之间的相关性热图[85]
Fig.6 (a) Schematic illustrations of the chemical descriptors for training ML models to predict CO2/CO selectivities and adsorption uptakes; (b) Schematic illustration of the correlations among CO2/CO selectivity, features, and CO2 (left) or CO loading (right); (c) Correlation heatmap between features and adsorption properties[85]
图7 (a) GC-Trans的模型结构框架示意图,分为输入数据、特征提取部分和特征组合三部分[89]; (b) 具有高CO2和N2吸附量的MOFs三级DT分类器[90]
Fig.7 (a) Schematic illustrations of model structure framework for GC-Trans, divided into three parts, namely, the input data, feature extraction section, and feature combination section[89]; (b) Three-levels DT classifiers of MOFs with high CO2 and N2 uptake capacities[90]
图8 从CoRE MOF数据库中使用ML辅助发现性能最好的C3H8选择性MOF的工作流程示意图[93]
Fig.8 Schematic workflow of the ML-assisted discovery of the top-performing C3H8-selective MOFs from the CoRE MOF database[93]
图9 使用ML辅助发现高性能MOF用于一步分离C2H2/C2H4/C2H6的工作流程示意图[38]
Fig.9 Schematic workflow of the ML-assisted discovery of the high-performing for one-step separation of C2H2/C2H4/C2H6[38]
图10 (a) 用于CF4/N2分离的最佳MOF材料的ML流程图[37]; (b) GCMC和ML计算步骤示意图[98]
Fig.10 (a) Flowchart of ML for the top MOF materials for CF4/N2 separation[37]; (b) Schematic of GCMC and ML calculation steps[98]
图11 (a) GCMC和ML计算工作流程示意图[105]; (b) 用于Kr/Xe分离的理想MOFs的筛选和组装工作流程[106]
Fig.11 (a) Schematic of GCMC and ML calculation workflow[105]; (b) Workflow of screening and assembly for promising MOFs on Kr/Xe separation[106]
图12 (a) GCMC和ML计算步骤示意图[115]; (b) 在1.0 bar的条件下比较了所识别的MOF与各种多孔材料的分离性能,其中黑色曲线表示nbo464的温度依赖性[116]
Fig. 12 (a) Schematic of GCMC and ML calculation steps[115]; (b) Comparison of the separation performance for the identified MOF with various porous materials under the condition of 1.0 bar, where the black curve represented the temperature dependence of the nbo464[116]
1 | Gomollón-Bel F. Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable[J]. Chemistry International, 2019, 41(2): 12-17. |
2 | Yaghi O M, Richardson D A, Li G, et al. Open-framework solids with diamond-like structures prepared from clusters and metal-organic building blocks[J]. MRS Online Proceedings Library, 1994, 371(1): 15-19. |
3 | Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. |
4 | Deng H X, Grunder S, Cordova K E, et al. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336(6084): 1018-1023. |
5 | Cadiau A, Adil K, Bhatt P M, et al. A metal-organic framework-based splitter for separating propylene from propane[J]. Science, 2016, 353(6295): 137-140. |
6 | Zeng H, Xie M, Wang T, et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures[J]. Nature, 2021, 595(7868): 542-548. |
7 | Krause S, Bon V, Senkovska I, et al. A pressure-amplifying framework material with negative gas adsorption transitions[J]. Nature, 2016, 532(7599): 348-352. |
8 | Lin J B, Nguyen T T T, Vaidhyanathan R, et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture[J]. Science, 2021, 374(6574): 1464-1469. |
9 | Lustig W P, Mukherjee S, Rudd N D, et al. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications[J]. Chemical Society Reviews, 2017, 46(11): 3242-3285. |
10 | Sohel Rana S M, Faruk O, Robiul Islam M, et al. Recent advances in metal-organic framework-based self-powered sensors: a promising energy harvesting technology[J]. Coordination Chemistry Reviews, 2024, 507: 215741. |
11 | Han D L, Liu X M, Wu S L. Metal organic framework-based antibacterial agents and their underlying mechanisms[J]. Chemical Society Reviews, 2022, 51(16): 7138-7169. |
12 | Huang Q X, Liang J L, Chen Q W, et al. Metal-organic framework nanoagent induces cuproptosis for effective immunotherapy of malignant glioblastoma[J]. Nano Today, 2023, 51: 101911. |
13 | So M C, Wiederrecht G P, Mondloch J E, et al. Metal–organic framework materials for light-harvesting and energy transfer[J]. Chemical Communications, 2015, 51(17): 3501-3510. |
14 | Li S J, Wang C C, Dong K X, et al. MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: performance and mechanism[J]. Chinese Journal of Catalysis, 2023, 51: 101-112. |
15 | Wang K Y, Zhang J Q, Hsu Y C, et al. Bioinspired framework catalysts: from enzyme immobilization to biomimetic catalysis[J]. Chemical Reviews, 2023, 123(9): 5347-5420. |
16 | Wang Q, Astruc D. State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chemical Reviews, 2020, 120(2): 1438-1511. |
17 | Wang G D, Krishna R, Li Y Z, et al. Boosting ethane/ethylene separation by MOFs through the amino-functionalization of pores[J]. Angewandte Chemie (International Ed), 2022, 61(48): e202213015. |
18 | Gu X W, Wang J X, Wu E Y, et al. Immobilization of lewis basic sites into a stable ethane-selective MOF enabling one-step separation of ethylene from a ternary mixture[J]. Journal of the American Chemical Society, 2022, 144(6): 2614-2623. |
19 | Liu X P, Hao C L, Li J, et al. An anionic metal–organic framework: metathesis of zinc(ii) with copper(ii) for efficient C3/C2 hydrocarbon and organic dye separation[J]. Inorganic Chemistry Frontiers, 2018, 5(11): 2898-2905. |
20 | Xiao Y C, Chen Y C, Wang W, et al. Simultaneous control of flexibility and rigidity in pore-space-partitioned metal–organic frameworks[J]. Journal of the American Chemical Society, 2023, 145(20): 10980-10986. |
21 | Chen L Y, Chen H R, Luque R, et al. Metal-organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts[J]. Chemical Science, 2014, 5(10): 3708-3714. |
22 | Gu S F, Xiong X H, Gong L L, et al. Classified encapsulation of an organic dye and metal–organic complex in different molecular compartments for white-light emission and selective adsorption of C2H2 over CO2 [J]. Inorganic Chemistry, 2021, 60(11): 8211-8217. |
23 | Heo C Y, Díaz-Ramírez M L, Park S H, et al. Solvent-driven dynamics: crafting tailored transformations of Cu(II)-based MOFs[J]. ACS Applied Materials & Interfaces, 2024, 16(7): 9068-9077. |
24 | Zhang Y Q, Liu L, Li W Z, et al. Solvent-induced In(III)-MOFs with controllable interpenetration degree performing high-efficiency separation of CO2/N2 and CO2/CH4 [J]. Inorganic Chemistry, 2024, 63(17): 7705-7713. |
25 | Moghadam P Z, Li A, Wiggin S B, et al. Development of a Cambridge structural database subset: a collection of metal–organic frameworks for past, present, and future[J]. Chemistry of Materials, 2017, 29(7): 2618-2625. |
26 | The Cambridge Structural Database[DB/OL]. [2024-10-17]. . |
27 | Sadeghi M, Esmaeilzadeh F, Mowla D, et al. Improving CO2 capture in UTSA-16(Zn) via alkali and alkaline earth metal introduction: GCMC and MD simulations study[J]. Separation and Purification Technology, 2024, 338: 126534. |
28 | Xiong X L, Chen G H, Xiao S T, et al. New discovery of metal–organic framework UTSA-280: ultrahigh adsorption selectivity of krypton over xenon[J]. The Journal of Physical Chemistry C, 2020, 124(27): 14603-14612. |
29 | Wang L, Liu S, Ji Z M, et al. Efficient CO2 capture over N2 in flexible MOFs: pressure driven breathing effect[J]. Chemical Engineering Science, 2024, 299: 120562. |
30 | Ji G J, Xiang T, Zhou X Q, et al. Molecular dynamics simulation of adsorption and separation of xylene isomers by Cu-HKUST-1[J]. RSC Advances, 2022, 12(54): 35290-35299. |
31 | Naderlou S, Vahedpour M, Franz D M. Functionalization strategy in 2D flexible Zn(BTTB)-MOF for improving storage and release of anticancer drugs: a comprehensive computational investigation[J]. Organometallics, 2024, 43(19): 2172-2190. |
32 | Naderlou S, Vahedpour M, Franz D M. Multi-scale computational investigation of Ag-doped two-dimensional Zn-based MOFs for storage and release of small NO and CO bioactive molecules[J]. Physical Chemistry Chemical Physics, 2023, 25(4): 2830-2845. |
33 | Boyd P G, Chidambaram A, García-Díez E, et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture[J]. Nature, 2019, 576(7786): 253-256. |
34 | Alpaydin E. Introduction to Machine Learning[M/OL]. Cambridge, Massachusetts, USA: MIT Press, 2014[2024-10-17]. . |
35 | Du R L, Xin R Q, Wang H, et al. Machine learning: an accelerator for the exploration and application of advanced metal-organic frameworks[J]. Chemical Engineering Journal, 2024, 490: 151828. |
36 | Wang Z H, Zhou Y G, Zhou T, et al. Identification of optimal metal-organic frameworks by machine learning: structure decomposition, feature integration, and predictive modeling[J]. Computers & Chemical Engineering, 2022, 160: 107739. |
37 | He Y J, Cao X H, Zhang Z Q, et al. Discovery of high-performing metal–organic frameworks for efficient SF6/N2 separation: a combined computational screening, machine learning, and experimental study[J]. Industrial & Engineering Chemistry Research, 2023, 62(19): 7642-7649. |
38 | Yan T A, Zhang Z Q, Zhong C L. Machine learning assisted discovery of efficient MOFs for one-step C2H4 purification from ternary C2H2/C2H4/C2H6 mixtures[J]. Journal of Chemical and Engineering Data, 2024. |
39 | 刘治鲁, 李炜, 刘昊, 等. 金属有机骨架的高通量计算筛选研究进展[J]. 化学学报, 2019, 77(4): 323-339. |
Liu Z L, Li W, Liu H, et al. Research progress of high-throughput computational screening of metal-organic frameworks [J]. Acta Chimica Sinica, 2019, 77(4): 323-339. | |
40 | 赵晨, 曹蓉, 夏杰桢, 等. 机器学习筛选用于气体吸附分离和存储的金属有机骨架材料[J]. 化学通报, 2024, 87(3): 317-324, 316. |
Zhao C, Cao R, Xia J Z, et al. Machine learning screening of MOF materials for gas adsorption separation[J]. Chemistry, 2024, 87(3): 317-324, 316. | |
41 | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展: 能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
Wen Y R, Fu J, Liu D H. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation[J]. CIESC Journal, 2024, 75(4): 1370-1381. | |
42 | Xin R Q, Wang C H, Zhang Y C, et al. Efficient removal of greenhouse gases: machine learning-assisted exploration of metal-organic framework space[J]. ACS Nano, 2024, 18(30): 19403-19422. |
43 | Altintas C, Altundal O F, Keskin S, et al. Machine learning meets with metal organic frameworks for gas storage and separation[J]. Journal of Chemical Information and Modeling, 2021, 61(5): 2131-2146. |
44 | Demir H, Daglar H, Gulbalkan H C, et al. Recent advances in computational modeling of MOFs: from molecular simulations to machine learning[J]. Coordination Chemistry Reviews, 2023, 484: 215112 |
45 | Blaiszik B, Chard K, Pruyne J, et al. The materials data facility: data services to advance materials science research[J]. JOM, 2016, 68(8): 2045-2052. |
46 | Bobbitt N S, Shi K H, Bucior B J, et al. MOFX-DB: an online database of computational adsorption data for nanoporous materials[J]. Journal of Chemical & Engineering Data, 2023, 68(2): 483-498. |
47 | Wilmer C E, Leaf M, Lee C Y, et al. Large-scale screening of hypothetical metal-organic frameworks[J]. Nature Chemistry, 2011, 4(2): 83-89. |
48 | Watanabe T, Sholl D S. Accelerating applications of metal-organic frameworks for gas adsorption and separation by computational screening of materials[J]. Langmuir, 2012, 28(40): 14114-14128. |
49 | Chung Y G, Camp J, Haranczyk M, et al. Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals[J]. Chemistry of Materials, 2014, 26(21): 6185-6192. |
50 | Altintas C, Avci G, Daglar H, et al. An extensive comparative analysis of two MOF databases: high-throughput screening of computation-ready MOFs for CH4 and H2 adsorption[J]. Journal of Materials Chemistry A, 2019, 7(16): 9593-9608. |
51 | Glasby L T, Gubsch K, Bence R, et al. DigiMOF: a database of metal-organic framework synthesis information generated via text mining[J]. Chemistry of Materials, 2023, 35(11): 4510-4524. |
52 | Domingues N P, Moosavi S M, Talirz L, et al. Using genetic algorithms to systematically improve the synthesis conditions of Al-PMOF[J]. Communications Chemistry, 2022, 5(1): 170. |
53 | Tshitoyan V, Dagdelen J, Weston L, et al. Unsupervised word embeddings capture latent knowledge from materials science literature[J]. Nature, 2019, 571(7763): 95-98. |
54 | First E L, Floudas C A. MOFomics: Computational pore characterization of metal–organic frameworks[J]. Microporous and Mesoporous Materials, 2013, 165: 32-39. |
55 | Rosen A S, Iyer S M, Ray D, et al. Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery[J]. Matter, 2021, 4(5): 1578-1597. |
56 | Krallinger M, Rabal O, Lourenço A, et al. Information retrieval and text mining technologies for chemistry[J]. Chemical Reviews, 2017, 117(12): 7673-7761. |
57 | Luo Y, Bag S, Zaremba O, et al. MOF synthesis prediction enabled by automatic data mining and machine learning[J]. Angewandte Chemie (International Ed), 2022, 61(19): e202200242. |
58 | Hai G, Gao H, Zhao G, et al. Difference between metal-S and metal-O bond orders: a descriptor of oxygen evolution activity for isolated metal atom-doped MoS2 nanosheets[J]. iScience, 2019, 20: 481-488. |
59 | Doitomi K, Hirao H. Hybrid computational approaches for deriving quantum mechanical insights into metal-organic frameworks[J]. Tetrahedron Letters, 2017, 58(24): 2309-2317. |
60 | Thai H T. Machine learning for structural engineering: A state-of-the-art review[J]. Structures, 2022, 38: 448-491. |
61 | Sarker I H. Machine learning: Algorithms, real-world applications and research directions[J]. SN Computer Science, 2021, 2(3): 160. |
62 | Castle W F. Air separation and liquefaction: recent developments and prospects for the beginning of the new millennium[J]. International Journal of Refrigeration, 2002, 25(1): 158-172. |
63 | Mullangi D, Evans H A, Yildirim T, et al. Noncryogenic air separation using aluminum formate Al(HCOO)3 (ALF)[J]. Journal of the American Chemical Society, 2023, 145(17): 9850-9856. |
64 | Mofarahi M, Towfighi J, Fathi L. Oxygen separation from air by four-bed pressure swing adsorption[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5439-5444. |
65 | Ferreira D, Boaventura M, Bárcia P, et al. Two-stage vacuum pressure swing adsorption using AgLiLSX zeolite for producing 99.5+% oxygen from air[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 722-736. |
66 | Orhan I B, Daglar H, Keskin S, et al. Prediction of O2/N2 selectivity in metal-organic frameworks via high-throughput computational screening and machine learning[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 736-749. |
67 | Yan Y L, Shi Z N, Li H L, et al. Machine learning and in-silico screening of metal–organic frameworks for O2/N2 dynamic adsorption and separation[J]. Chemical Engineering Journal, 2022, 427: 131604. |
68 | He S Y, Cheng M, Liu C, et al. High-throughput virtual screening of biometal–organic frameworks for O2/N2 separation[J]. Industrial & Engineering Chemistry Research, 2024, 63(5): 2347-2360. |
69 | Saha D, Grappe H A, Chakraborty A, et al. Postextraction separation, on-board storage, and catalytic conversion of methane in natural gas: a review[J]. Chemical Reviews, 2016, 116(19): 11436-11499. |
70 | Hamedi H, Karimi I A, Gundersen T. Optimal cryogenic processes for nitrogen rejection from natural gas[J]. Computers & Chemical Engineering, 2018, 112: 101-111. |
71 | Guo P T, Ying Y P, Liu D H. One scalable and stable metal-organic framework for efficient separation of CH4/N2 mixture[J]. ACS Applied Materials & Interfaces, 2024, 16(6): 7338-7344. |
72 | Gulbalkan H C, Uzun A, Keskin S. Evaluating CH4/N2 separation performances of hundreds of thousands of real and hypothetical MOFs by harnessing molecular modeling and machine learning[J]. ACS Applied Materials & Interfaces, 2023. |
73 | Bluemling B, Mol A P J, Tu Q. The social organization of agricultural biogas production and use[J]. Energy Policy, 2013, 63: 10-17. |
74 | Ahmed S F, Mofijur M, Tarannum K, et al. Biogas upgrading, economy and utilization: a review[J]. Environmental Chemistry Letters, 2021, 19(6): 4137-4164. |
75 | Xie W P, Fu Q J, Yang L Z, et al. Methane storage and purification of natural gas in metal-organic frameworks[J]. ChemSusChem, 2024: 2401382. |
76 | Li J F, Li Y, Situ Y Z, et al. Unraveling the separation mechanism of gas mixtures in MOFs by combining the breakthrough curve with machine learning and high-throughput calculation[J]. Chemical Engineering Science, 2024, 299: 120470. |
77 | Yulia F, Chairina I, Zulys A, et al. Multi-objective genetic algorithm optimization with an artificial neural network for CO2/CH4 adsorption prediction in metal–organic framework[J]. Thermal Science and Engineering Progress, 2021, 25: 100967. |
78 | Aghaji M Z, Fernandez M, Boyd P G, et al. Quantitative structure–property relationship models for recognizing metal organic frameworks (MOFs) with high CO2 working capacity and CO2/CH4 selectivity for methane purification[J]. European Journal of Inorganic Chemistry, 2016, 2016(27): 4505-4511. |
79 | Wang Y T, Jalife S, Robles A, et al. Efficient CO2/CO separation by pressure swing adsorption using an intrinsically nanoporous molecular crystal[J]. ACS Applied Nano Materials, 2022, 5(10): 14021-14026. |
80 | Korelskiy D, Grahn M, Ye P, et al. A study of CO2/CO separation by sub-micron b-oriented MFI membranes[J]. RSC Advances, 2016, 6(70): 65475-65482. |
81 | Kim H, Kim Y, Yoon M, et al. Highly selective carbon dioxide sorption in an organic molecular porous material[J]. Journal of the American Chemical Society, 2010, 132(35): 12200-12202. |
82 | Rashidi H, Rasouli P, Azimi H. A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent: microcontactor mass transfer study[J]. Energy, 2022, 244: 122711. |
83 | He T, Si B, Gundersen T, et al. High ethane content enables efficient CO2 capture from natural gas by cryogenic distillation[J]. Separation and Purification Technology, 2025, 352: 128153. |
84 | Anderson R, Biong A, Gómez-Gualdrón D A. Adsorption isotherm predictions for multiple molecules in MOFs using the same deep learning model[J]. Journal of Chemical Theory and Computation, 2020, 16(2): 1271-1283. |
85 | Sung I T, Lin L C. In silico study of metal–organic frameworks for CO2/CO separation: molecular simulations and machine learning[J]. The Journal of Physical Chemistry C, 2023, 127(28): 13886-13899. |
86 | Li P L, Shen Y L, Wang D D, et al. Selective adsorption-based separation of flue gas and natural gas in zirconium metal-organic frameworks nanocrystals[J]. Molecules, 2019, 24(9): 1822. |
87 | Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941): 705-714. |
88 | Siegelman R L, Kim E J, Long J R. Porous materials for carbon dioxide separations[J]. Nature Materials, 2021, 20(8): 1060-1072. |
89 | Zhao Y M, Zhao Y J, Gong Q H, et al. Graph transformer with convolution parallel networks for predicting single and binary component adsorption performance of metal–organic frameworks[J]. ACS Applied Materials & Interfaces, 2023, 15(42): 49527-49537. |
90 | Fernandez M, Barnard A S. Geometrical properties can predict CO2 and N2 adsorption performance of metal-organic frameworks (MOFs) at low pressure[J]. ACS Combinatorial Science, 2016, 18(5): 243-252. |
91 | Rege S U, Padin J, Yang R T. Olefin/paraffin separations by adsorption: π-complexation vs. kinetic separation[J]. AIChE Journal, 1998, 44(4): 799-809. |
92 | Liu D, Pei J Y, Zhang X, et al. Scalable green synthesis of robust ultra-microporous Hofmann clathrate material with record C3H6 storage density for efficient C3H6/C3H8 separation[J]. Angewandte Chemie (International Ed), 2023, 62(12): e202218590. |
93 | Wang Y, Jiang Z J, Wang D R, et al. Machine learning-assisted discovery of propane-selective metal-organic frameworks[J]. Journal of the American Chemical Society, 2024, 146(10): 6955-6961. |
94 | Amghizar I, Vandewalle L A, Van Geem K M, et al. New trends in olefin production[J]. Engineering, 2017, 3(2): 171-178. |
95 | Senkovska I, Barea E, Navarro J A R, et al. Adsorptive capturing and storing greenhouse gases such as sulfur hexafluoride and carbon tetrafluoride using metal–organic frameworks[J]. Microporous and Mesoporous Materials, 2012, 156: 115-120. |
96 | Wu Y, Yan T, Zhang W X, et al. Adsorption interface-induced H...F charge transfer in ultramicroporous metal–organic frameworks for perfluorinated gas separation[J]. Industrial & Engineering Chemistry Research, 2022, 61(36): 13603-13611. |
97 | Wen Y R, Fu J, Yan T A, et al. Combining machine learning and molecular simulation to explore MOF materials that contribute to CF4/N2 separation[J]. Inorganic Chemistry Communications, 2024, 168: 112927. |
98 | Xu H, Mguni L L, Yao Y L, et al. Machine learning-assisted high-throughput screening of MOFs for efficient adsorption and separation of CF4/N2 [J]. Journal of Cleaner Production, 2024, 461: 142634. |
99 | Bodys J W S, Campbell K C. Radioactive-kryptonation of metals by film evaporation[J]. The International Journal of Applied Radiation and Isotopes, 1973, 24(2): 107-113. |
100 | Denisova N, Gavare Z, Revalde G, et al. A study of capillary discharge lamps in Ar–Hg and Xe–Hg mixtures[J]. Journal of Physics D: Applied Physics, 2011, 44: 155201. |
101 | Bussiahn R, Gortchakov S, Lange H, et al. Experimental and theoretical investigations of a low-pressure He–Xe discharge for lighting purpose[J]. Journal of Applied Physics, 2004, 95(9): 4627-4634. |
102 | Peng T, Britton G L, Kim H, et al. Therapeutic time window and dose dependence of xenon delivered via echogenic liposomes for neuroprotection in stroke[J]. CNS Neuroscience & Therapeutics, 2013, 19(10): 773-784. |
103 | Rasmussen J H, Mosfeldt M, Pott F C, et al. Xenon for induction of anaesthesia[J]. Acta Anaesthesiologica Scandinavica, 2009, 53(4): 549-550. |
104 | Aprile E, Aalbers J, Agostini F, et al. Removing krypton from xenon by cryogenic distillation to the ppq level[J]. The European Physical Journal C, 2017, 77(5): 275. |
105 | Zhao G B, Chen Y, Chung Y G. High-throughput, multiscale computational screening of metal–organic frameworks for Xe/Kr separation with machine-learned parameters[J]. Industrial & Engineering Chemistry Research, 2023, 62(37): 15176-15189. |
106 | Du X M, Xiao S T, Wang X, et al. Combination of high-throughput screening and assembly to discover efficient metal–organic frameworks on Kr/Xe adsorption separation[J]. The Journal of Physical Chemistry B, 2023, 127(38): 8116-8130. |
107 | Liu M, Zhang L D, Little M A, et al. Barely porous organic cages for hydrogen isotope separation[J]. Science, 2019, 366(6465): 613-620. |
108 | Si Y N, He X, Jiang J, et al. Highly effective H2/D2 separation in a stable Cu-based metal-organic framework[J]. Nano Research, 2021, 14(2): 518-525. |
109 | Zhang L D, Jee S, Park J, et al. Exploiting dynamic opening of apertures in a partially fluorinated MOF for enhancing H2 desorption temperature and isotope separation[J]. Journal of the American Chemical Society, 2019, 141(50): 19850-19858. |
110 | Rae H K. Selecting heavy water processes[M]//Rae H K, ed. ACS Symposium Series. WASHINGTON, D. C.: AMERICAN CHEMICAL SOCIETY, 1978: 1-26. |
111 | Li Y, Situ Y Z, Guan K X, et al. High dynamic separation performance of metal–organic frameworks for D2/H2: independent or competitive adsorption?[J]. AIChE Journal, 2024, 70(1): e18283. |
112 | Beenakker J J M, Borman V D, Krylov S Y. Molecular transport in subnanometer pores: zero-point energy, reduced dimensionality and quantum sieving[J]. Chemical Physics Letters, 1995, 232(4): 379-382. |
113 | Kim J Y, Oh H, Moon H R. Hydrogen isotope separation in confined nanospaces: carbons, zeolites, metal-organic frameworks, and covalent organic frameworks[J]. Advanced Materials, 2019, 31(20): e1805293. |
114 | Zhou M S, Vassallo A, Wu J Z. Toward the inverse design of MOF membranes for efficient D2/H2 separation by combination of physics-based and data-driven modeling[J]. Journal of Membrane Science, 2020, 598: 117675. |
115 | Wang F, Bi Z Y, Ding L F, et al. Large-scale computational screening of metal–organic frameworks for D2/H2 separation[J]. Chinese Journal of Chemical Engineering, 2023, 54: 323-330. |
116 | Chen Y L, Ying Y P, Situ Y Z, et al. Machine learning aided computational exploration of metal–organic frameworks with open Cu sites for the effective separation of hydrogen isotopes[J]. Separation and Purification Technology, 2024, 334: 126001. |
117 | Tsamardinos I, Fanourgakis G S, Greasidou E, et al. An Automated Machine Learning architecture for the accelerated prediction of Metal-Organic Frameworks performance in energy and environmental applications[J]. Microporous and Mesoporous Materials, 2020, 300: 110160. |
118 | Wang B, Pei W B, Xue B, et al. A multiobjective genetic algorithm to evolving local interpretable model-agnostic explanations for deep neural networks in image classification[J]. IEEE Transactions on Evolutionary Computation, 2024, 28(4): 903-917. |
119 | Hasan M, Roy P, Nitu A M. Cervical cancer classification using machine learning with feature importance and model explainability[C]//2022 4th International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE). December 29-31, 2022 , Rajshahi, Bangladesh. IEEE, 2022: 1-4. |
120 | Guo S Y, Huang X S, Situ Y Z, et al. Interpretable machine-learning and big data mining to predict gas diffusivity in metal-organic frameworks[J]. Advanced Science, 2023, 10(21): e2301461. |
121 | Guan Y F, Huang X S, Xu F Y, et al. Data-driven and machine learning to screen metal-organic frameworks for the efficient separation of methane[J]. Nanomaterials, 2024, 14(13): 1074. |
122 | Yadava K, Srivastava S, Yadav A. Molecular simulations and deep neural networks-based interpretable machine learning modelling of reverse adsorptive MOFs for ethane/ethylene separation[J]. The Canadian Journal of Chemical Engineering, 2024. |
123 | Ge Z W, Feng S, Ma C C, et al. Quantifying and comparing the effects of key chemical descriptors on metal–organic frameworks water stability with CatBoost and SHAP[J]. Microchemical Journal, 2024, 196: 109625. |
124 | Burger B, Maffettone P M, Gusev V V, et al. A mobile robotic chemist[J]. Nature, 2020, 583(7815): 237-241. |
125 | Chai M, Moradi S, Erfani E, et al. Application of machine learning algorithms to estimate enzyme loading, immobilization yield, activity retention, and reusability of enzyme–metal–organic framework biocatalysts[J]. Chemistry of Materials, 2021, 33(22): 8666-8676. |
126 | Ma Y, Leng Y J, Huo D Q, et al. A portable sensor for glucose detection in Huangshui based on blossom-shaped bimetallic organic framework loaded with silver nanoparticles combined with machine learning[J]. Food Chemistry, 2023, 429: 136850. |
127 | Wang Y, He L Q, Wang M J, et al. The drug loading capacity prediction and cytotoxicity analysis of metal–organic frameworks using stacking algorithms of machine learning[J]. International Journal of Pharmaceutics, 2024, 656: 124128. |
128 | Lin J L, Zhang H B, Asadi M, et al. Machine learning-driven discovery and structure–activity relationship analysis of conductive metal–organic frameworks[J]. Chemistry of Materials, 2024, 36(11): 5436-5445. |
[1] | 吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643. |
[2] | 张林, 张子怡, 李勇, 童少平. Fe-MOF-74前体制备铁-碳/氮复合材料及其活化过硫酸盐性能[J]. 化工学报, 2024, 75(5): 1882-1889. |
[3] | 秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881. |
[4] | 周康, 王建新, 于海, 魏朝良, 范丰奇, 车昕昊, 张磊. 基于分子动力学模拟的矿物基础油泡沫破裂性能研究[J]. 化工学报, 2024, 75(4): 1668-1678. |
[5] | 刘东飞, 张帆, 刘铮, 卢滇楠. 机器学习势及其在分子模拟中的应用综述[J]. 化工学报, 2024, 75(4): 1241-1255. |
[6] | 张政, 汪妩琼, 张雅静, 王康军, 吉远辉. 理论计算在药物制剂设计中的研究进展[J]. 化工学报, 2024, 75(4): 1429-1438. |
[7] | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
[8] | 刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
[9] | 曾玉娇, 肖炘, 杨刚, 张意博, 郑光明, 李防, 汪凤玲. 基于机理与数据混合驱动的湿法磷酸生产过程代理建模与优化[J]. 化工学报, 2024, 75(3): 936-944. |
[10] | 陈宇翔, 刘传磊, 龚子君, 赵起越, 郭冠初, 姜豪, 孙辉, 沈本贤. 机器学习辅助乙硫醇高效吸收溶剂分子设计[J]. 化工学报, 2024, 75(3): 914-923. |
[11] | 吴凡, 彭旭东, 江锦波, 孟祥铠, 梁杨杨. 分子动力学模拟预测天然气密度和黏度的可行性研究[J]. 化工学报, 2024, 75(2): 450-462. |
[12] | 于志奕, 方俊彦, 陈文尧, 钱刚, 段学志. Pt-Bi界面结构调控及其催化甘油选择性氧化反应性能[J]. 化工学报, 2024, 75(10): 3568-3578. |
[13] | 蒋斯麒, 胡玉峰, 程永强, 刘清华, 雷志刚. 离子液体萃取分离FCC柴油中双环芳香性硫氮组分:实验和分子机理[J]. 化工学报, 2024, 75(10): 3651-3659. |
[14] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[15] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 183
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 230
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||