化工学报

• •    

机器学习辅助MOFs高通量计算筛选及气体分离研究进展

胡嘉朗(), 姜明源(), 金律铭, 张永刚, 胡鹏(), 纪红兵()   

  1. 浙江工业大学化学工程学院,浙江 杭州 310014
  • 收稿日期:2024-10-31 修回日期:2024-12-12 出版日期:2024-12-13
  • 通讯作者: 胡鹏,纪红兵
  • 作者简介:胡嘉朗(1999—),男,博士研究生,1803228068@qq.com
    姜明源(2001—),男,硕士研究生,692012132@qq.com
  • 基金资助:
    国家重点研发计划项目(2020YFA0210900);国家自然科学基金项目(21938001);广东省科技规划项目(STKJ2023015);广东省自然科学基金项目(2023B1515020101);广西科技项目(AA23062018);大学生创新创业训练计划项目(202410337028);浙江省教育厅科研项目(Y202455550)

Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research

Jialang HU(), Mingyuan JIANG(), Lvming JIN, Yonggang ZHANG, Peng HU(), Hongbing JI()   

  1. School of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
  • Received:2024-10-31 Revised:2024-12-12 Online:2024-12-13
  • Contact: Peng HU, Hongbing JI

摘要:

金属有机框架(metal organic frameworks, MOFs)材料,以其高比表面积、大孔体积以及结构可调等特性,在气体储存、吸附分离以及催化等诸多领域引起了广泛关注。近年来MOFs的数量呈现爆发式增长态势,这使得针对特定应用场景探寻合适的MOFs成为一项极具挑战性的任务。在此情形下,高通量计算筛选(high-throughput computing screening, HTCS)成为从海量材料中筛选出高性能目标MOFs最为有效的研究方法。HTCS会产生大量多维的数据,而这些数据可进一步用于机器学习(machine learning, ML)训练。最近,将ML应用到MOFs的HTCS中成为新的热点,它不仅可以揭示材料潜在的结构-性能关系,还可以洞悉它们在不同应用中的性能变化,尤其是在气体储存和分离方面。在这篇综述中,我们着重介绍了ML辅助HTCS在MOFs气体分离领域的最新技术进展,系统分析了在探寻高性能MOFs时ML与HTCS相互协同以提升筛选效率的内在机制,深入探讨了在这一新领域中呈现出的机遇和挑战。

关键词: 金属有机框架, 高通量计算筛选, 分子模拟, 机器学习, 吸附分离

Abstract:

Metal organic frameworks (MOFs) have garnered extensive research interest in fields such as gas storage, adsorption separation, and catalysis due to their high surface area, large pore volume, and tunable structures. In recent years, the surge in the number of MOFs has posed unprecedented challenges in finding the ideal MOF for specific applications. In this scenario, high-throughput computing screening (HTCS) has become the most effective research method for screening high-performance target MOFs from a vast array of materials. HTCS generates voluminous and multidimensional data, which can further be used for machine learning (ML) training. Recently, the implementation of ML to HTCS of MOFs has become a new hotspot, not only for revealing the potential structure-performance relationships of materials but also for providing insights into their performance trends in different applications, especially in gas storage and separation. In this review, we highlight the latest advances in ML-assisted HTCS in the field of MOFs gas separation, systematically analyze the internal mechanism of ML and HTCS collaboration to improve screening efficiency in the search for high-performance MOFs, and explore the opportunities and challenges presented in this new field.

Key words: metal organic frameworks, high-throughput computing screening, molecular simulation, machine learning, adsorption and separation

中图分类号: