| [1] |
张宝丹, 靳海波, 郭晓燕, 等. 均一球形BaTiO3超细粉体的制备技术[J]. 化工进展, 2019, 38(5): 2262-2268.
|
|
Zhang B D, Jin H B, Guo X Y, et al. Preparation technology of uniform spherical BaTiO3 ultrafine powders[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2262-2268.
|
| [2] |
王信群, 孔丽丽, 徐海顺, 等. 超细粉体云幕抑制大型管道内瓦斯爆炸火焰传播[J]. 煤炭学报, 2017, 42(6): 1482-1488.
|
|
Wang X Q, Kong L L, Xu H S, et al. Suppression of methane/air flame propagation in large scale pipelines by clouds of ultrafine powders[J]. Journal of China Coal Society, 2017, 42(6): 1482-1488.
|
| [3] |
汪光辉, 沈进杰, 刘亚辉. 超细粉体加工设备研究现状[J]. 现代矿业, 2022, 38(6): 10-13.
|
|
Wang G H, Shen J J, Liu Y H. Research status of ultrafine powder processing equipment[J]. Modern Mining, 2022, 38(6): 10-13.
|
| [4] |
常颖, 郭宇晴, 刘英莉, 等. 基于离心方式的超细粉体压缩技术[J]. 中国粉体技术, 2017, 23(5): 35-42, 48.
|
|
Chang Y, Guo Y Q, Liu Y L, et al. Superfine powder compression technology based on centrifuge[J]. China Powder Science and Technology, 2017, 23(5): 35-42, 48.
|
| [5] |
Rognon P G, Roux J N, Naaïm M, et al. Dense flows of cohesive granular materials[J]. Journal of Fluid Mechanics, 2008, 596: 21-47.
|
| [6] |
吴震, 王利强, 徐立敏, 等. 粉体料仓设计及卸料特性综述[J]. 中国粉体技术, 2023, 29(1): 19-30.
|
|
Wu Z, Wang L Q, Xu L M, et al. Powder silo design and discharge characteristics: a review[J]. China Powder Science and Technology, 2023, 29(1): 19-30.
|
| [7] |
李忠毅, 李勇, 姜开忠. 粉体料仓存在的问题及解决方法[J]. 起重运输机械, 2022(6): 29-35.
|
|
Li Z Y, Li Y, Jiang K Z. Problems and solutions of powder silo[J]. Hoisting and Conveying Machinery, 2022(6): 29-35.
|
| [8] |
Ketterhagen W R, Curtis J S, Wassgren C R, et al. Predicting the flow mode from hoppers using the discrete element method[J]. Powder Technology, 2009, 195(1): 1-10.
|
| [9] |
孙栋. 料仓改流体对粉体下料影响的研究[D]. 上海: 华东理工大学, 2020.
|
|
Sun D. Study on effects of inserts in hopper on powder discharge[D]. Shanghai: East China University of Science and Technology, 2020.
|
| [10] |
Jenike A W. Storage and flow of solids: Bulletin No.123 of the Utah Engineering Experimental Station[R]. Salt Lake City, UT: University of Utah, 1964.
|
| [11] |
Ferrari G, Bell T A. Effect of aeration on the discharge behaviour of powders[J]. Powder Handing Processing, 1998, 10: 269-274.
|
| [12] |
Fitzpatrick J J, Barringer S A, Iqbal T. Flow property measurement of food powders and sensitivity of Jenike's hopper design methodology to the measured values[J]. Journal of Food Engineering, 2004, 61(3): 399-405.
|
| [13] |
Verghese T M, Nedderman R M. The discharge of fine sands from conical hoppers[J]. Chemical Engineering Science, 1995, 50(19): 3143-3153.
|
| [14] |
Nedderman R M, Tūzūn U, Thorpe R B. The effect of interstitial air pressure gradients on the discharge from bins[J]. Powder Technology, 1983, 35(1): 69-81.
|
| [15] |
Altiner H K. Flow of solids form aerated hopper: effect of aeration methods [J]. AIChE Journal, 1983, 222: 55-59.
|
| [16] |
Massimilla L, Betta V, Della Rocca C. A study of streams of solids flowing from solid-gas fluidized beds[J]. AIChE Journal, 1961, 7(3): 502-508.
|
| [17] |
Klein J, Höhne D, Husemann K. The influence of air permeation on the flow properties of bulk solids[J]. Chemical Engineering & Technology, 2003, 26(2): 139-146.
|
| [18] |
Donsì G, Ferrari G, Poletto M, et al. Gas pressure measurements inside an aerated hopper[J]. Chemical Engineering Research and Design, 2004, 82(1): 72-84.
|
| [19] |
Cannavacciuolo A, Barletta D, Donsì G, et al. Arch-free flow in aerated silo discharge of cohesive powders[J]. Powder Technology, 2009, 191(3): 272-279.
|
| [20] |
陆海峰, 阮琥, 曹嘉琨, 等. 细粉下料过程的气固流体动力学作用分析[J]. 化工学报, 2021, 72(11): 5533-5542.
|
|
Lu H F, Ruan H, Cao J K, et al. Analysis of the gas-solid fluid dynamic interaction on fine powder discharge[J]. CIESC Journal, 2021, 72(11): 5533-5542.
|
| [21] |
姜蔚, 李铁虎, 解本亮, 等. 近年国外核生化沾染环境洗消概述[C]//2019中国环境科学学会科学技术年会论文集(第四卷). 西安, 2019: 672-675.
|
|
Jiang W, Li T H, Xie B L, et al. Overview of recent years on the decontamination of nuclear, biological, and chemical contaminated environments abroad[C]//Proceedings of the 2019 Annual Conference on Science and Technology of the Chinese Society of Environmental Sciences (Volume 4). Xi'an, 2019: 672-675.
|
| [22] |
Jin Y, Lu H F, Guo X L, et al. Effect of water addition on flow properties of lignite particles[J]. Chemical Engineering Research and Design, 2018, 132: 1020-1029.
|
| [23] |
刘英莉, 朱文超, 邹志云, 等. 超细粉体团聚性表征技术研究[J]. 中国粉体技术, 2020, 26(6): 45-50.
|
|
Liu Y L, Zhu W C, Zou Z Y, et al. Research on agglomeration characterization technology of ultrafine powder[J]. China Powder Science and Technology, 2020, 26(6): 45-50.
|
| [24] |
漆海峰, 郭晓镭, 陆海峰, 等. 煤粉的流动性测试及评价方法[J]. 化工学报, 2012, 63(2): 433-440.
|
|
Qi H F, Guo X L, Lu H F, et al. Measurement of flowability of coal powders and research methods[J]. CIESC Journal, 2012, 63(2): 433-440.
|
| [25] |
Lu H F, Cao J K, Guo X L, et al. Evaluation of powder tensile strength by compression, shear and fluidization modules of the powder rheometer[J]. Chemical Engineering Research and Design, 2020, 160: 1-10.
|
| [26] |
ASTM International. Standard test method for shear testing of bulk solids using the jenike shear cell: [S]. 2000.
|
| [27] |
Drescher A, Waters A J, Rhoades C A. Arching in hoppers(Ⅰ): Arching theories and bulk material flow properties[J]. Powder Technology, 1995, 84(2): 165-176.
|
| [28] |
Drescher A, Waters A J, Rhoades C A. Arching in hoppers(Ⅰ):Arching theories and bulk material flow properties[J]. Powder Technology, 1995, 84(2): 177-183.
|
| [29] |
Rumpf H. Basic principles and methods of granulation: Ⅰ, Ⅱ [J]. Chem. Ing. Tech. 1958, 30: 138-144.
|
| [30] |
Kurz H P. The stability of material bridges in aerated silos[J]. Powder Technology, 1975, 13(1): 57-72.
|
| [31] |
Barletta D, Donsì G, Ferrari G, et al. Solid flow rate prediction in silo discharge of aerated cohesive powders[J]. AIChE Journal, 2007, 53(9): 2240-2253.
|
| [32] |
Kurz H P, Rumpf H. Flow processes in aerated silos[J]. Powder Technology, 1975, 11(2): 147-156.
|