化工学报 ›› 2025, Vol. 76 ›› Issue (8): 3864-3872.DOI: 10.11949/0438-1157.20250117

• 流体力学与传递现象 • 上一篇    下一篇

小通道内非共沸工质流动沸腾换热数值分析

周航1(), 张斯婧1, 刘剑1,2(), 张小松1,2   

  1. 1.东南大学能源与环境学院,江苏 南京 210096
    2.低碳型建筑环境设备与系统节能教育部工程研究中心,江苏 南京 210096
  • 收稿日期:2025-02-07 修回日期:2025-03-18 出版日期:2025-08-25 发布日期:2025-09-17
  • 通讯作者: 刘剑
  • 作者简介:周航(2000—),男,硕士研究生,zhouhang18866@163.com
  • 基金资助:
    江苏省自然科学基金-青年项目(BK20230846);江苏省创新能力建设计划项目(BM2023013)

Numerical analysis of flow boiling heat transfer of zeotropic mixtures in mini-channels

Hang ZHOU1(), Sijing ZHANG1, Jian LIU1,2(), Xiaosong ZHANG1,2   

  1. 1.School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
    2.Engineering Research Center of Building Equipment, Energy, and Environment, Ministry of Education, Nanjing 210096, Jiangsu, China
  • Received:2025-02-07 Revised:2025-03-18 Online:2025-08-25 Published:2025-09-17
  • Contact: Jian LIU

摘要:

为研究非共沸工质在小通道内的流动沸腾换热特性,基于VOF多相流模型并结合改进Lee相变模型,研究了非共沸工质(R134a/R245fa)在水平小通道内的流动沸腾换热特性。通过与实验数据对比,验证了模型的可靠性。进一步在恒定壁温条件下,分析了质量流密度[50~1100 kg/(m²·s)]、工质组分配比[R134a入口浓度(质量分数)为0.1~0.9]和加热壁温(32~70℃)对流动沸腾换热性能的影响。结果表明,低质量流密度对传热系数影响明显,在低质量流密度下,当质量流密度从50 kg/(m²·s)上升至400 kg/(m²·s)时,传热系数提高超过90%,在高质量流密度条件下,当质量流密度增大到1100 kg/(m²·s)时,传热系数降低约27%。同时,当低沸点组分R134a入口浓度从0.1升至0.3时,传热系数下降15%~45%;而在高浓度下,当壁温从32℃升到40℃时,传热系数显著提升,随后趋于平稳,最大值出现在40℃左右。研究结果为非共沸工质在小通道内的研究和应用提供支撑。

关键词: 非共沸工质, 小通道, 沸腾, 多相流, 传热传质, 数值分析

Abstract:

The flow boiling heat transfer characteristics of zeotropic mixtures in mini-channels are investigated using a numerical approach based on the volume of fluid (VOF) multiphase model, incorporating an improved Lee phase change model. The model's accuracy is validated through comparison with experimental data. Under constant wall temperature conditions, the effects of mass flux [50—1100 kg/(m²·s)], mixture composition (R134a inlet mass fraction 0.1—0.9), and wall temperature (32—70℃) on heat transfer performance are systematically analyzed. The results indicate that at low mass flux, an increase from 50 kg/(m²·s) to 400 kg/(m²·s) enhances the heat transfer coefficient by more than 90%. However, at high mass flux, further increasing to 1100 kg/(m²·s) reduces the heat transfer coefficient by approximately 27%, suggesting a transition in the dominant heat transfer mechanism. At the same time, when the inlet concentration of the low-boiling component R134a increases from 0.1 to 0.3, the heat transfer coefficient decreases by 15% to 45%. Furthermore, at high R134a concentrations, the heat transfer coefficient rises significantly as wall temperature increases from 32℃ to 40℃, after which it stabilizes, reaching a peak near 40℃. These findings provide insights into the underlying transport mechanisms governing zeotropic mixture flow boiling in mini-channels and offer guidance for optimizing thermal management applications.

Key words: zeotropic mixture, mini-channel, boiling, multiphase flow, heat and mass transfer, numerical analysis

中图分类号: