化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4882-4892.DOI: 10.11949/0438-1157.20250164
佟丽丽1(
), 陈英1,2(
), 艾敏华1(
), 舒玉美1, 张香文1, 邹吉军1, 潘伦1(
)
收稿日期:2025-02-21
修回日期:2025-05-13
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
艾敏华,潘伦
作者简介:佟丽丽(1983—),女,博士研究生,1060207133@qq.com基金资助:
Lili TONG1(
), Ying CHEN1,2(
), Minhua AI1(
), Yumei SHU1, Xiangwen ZHANG1, Jijun ZOU1, Lun PAN1(
)
Received:2025-02-21
Revised:2025-05-13
Online:2025-09-25
Published:2025-10-23
Contact:
Minhua AI, Lun PAN
摘要:
高能量密度燃料作为航空推进系统的关键能源,可通过分子结构设计与组成优化提高飞行器的航程、航速和载荷能力。光化学为张力结构燃料和多环结构燃料合成提供了一种绿色工艺,但面临光生电荷分离效率低、反应性能差等问题。本工作研究了ZnO/WO3异质结光催化降冰片二烯和环己烯酮混合体系的[2+2]环加成过程。通过反应路径调控实现了混合燃料组成调制,有效解决了单组分燃料中密度和冰点性能的制约限制。研究发现,在光催化剂催化和环己烯酮敏化作用下,降冰片二烯分子内环加成制备四环庚烷的反应过程被促进。相比于ZnO,ZnO/WO3异质结光催化剂会抑制激发三重态环己烯酮的形成,进而抑制环己烯酮参与的分子间[2+2]环加成反应过程。最终通过加氢脱氧精制获得混合燃料产品,其中QC/1-adduct质量比约为1.20时,其密度为0.984 g/cm3,热值为43.17 MJ/kg,冰点<-60℃。本工作为开发高效和可持续的航空能源体系提供了新思路。
中图分类号:
佟丽丽, 陈英, 艾敏华, 舒玉美, 张香文, 邹吉军, 潘伦. ZnO/WO3异质结光催化环烯烃[2+2]环加成制备高能量密度燃料[J]. 化工学报, 2025, 76(9): 4882-4892.
Lili TONG, Ying CHEN, Minhua AI, Yumei SHU, Xiangwen ZHANG, Jijun ZOU, Lun PAN. ZnO/WO3 heterojunction modulated [2+2] photocycloaddition of cycloolefins for high-energy-density fuels production[J]. CIESC Journal, 2025, 76(9): 4882-4892.
图2 ZnO、ZnO/WO3和WO3的XRD谱图(a)和紫外-可见漫反射光谱(b);NBD(c)和CHOE(d)分别加入ZnO和ZnO/WO3异质结前后的紫外-可见吸收光谱
Fig.2 XRD patterns (a) and UV-vis diffuse reflection spectra (b) of ZnO, ZnO/WO3 and WO3; UV-vis absorption spectra of NBD (c) and CHOE (d) before and after the addition of ZnO and ZnO/WO3 heterojunction, respectively
图3 CHOE及加入ZnO或ZnO/WO3异质结的磷光光谱(77 K)(a)和磷光寿命(b);(c)ZnO和ZnO/WO3异质结加入CHOE和CHOE-NBD混合体系的磷光信号强度(458 nm);(d)加入CHOE前后ZnO/WO3异质结的荧光光谱
Fig. 3 Phosphorescence (PH) spectra (77 K) (a) and phosphorescence lifetime (b) of CHOE with or without ZnO and ZnO/WO3 heterojunction; (c) The phosphorescence signal intensity of CHOE and CHOE-NBD with the addition of ZnO and ZnO/WO3 heterojunctions at 458 nm; (d) Steady-state photoluminescence (PL) spectra of ZnO/WO3 heterojunction with or without CHOE
图4 (a)产物色谱图;(b)NBD和CHOE光催化[2+2]环加成反应随时间的变化
Fig. 4 (a) GC spectra of products distribution; (b) Time-dependent [2+2] photocycloaddition of NBD and CHOE
图5 ZnO与ZnO/WO3异质结对纯NBD体系(a)和纯CHOE体系(b)光环加成反应过程的影响
Fig. 5 The effects of ZnO and ZnO/WO3 heterojunction on photocycloaddition process of NBD (a) or CHOE(b)
图6 催化剂(a)和ZnO/WO3异质结用量(b)对CHOE和NBD光催化[2+2]环加成的影响
Fig. 6 Effects of catalysts (a) and the amount of ZnO/WO3 heterojunction (b) on the [2+2] photocycloaddition of NBD and CHOE
图7 反应温度(a)和光强(b)对光催化[2+2]环加成反应的影响作用;(c)ZnO/WO3异质结的循环稳定性测试
Fig. 7 Effects of temperature (a) and light intensity (b) on [2+2] photocycloaddition; (c) Stability test of ZnO/WO3 heterojunctions
图8 (a) ZnO和ZnO/WO3异质结对CHOE与QC光催化[2+2]环加成反应的影响;(b)SiO2对CHOE与NBD的[2+2]光环加成反应的影响
Fig. 8 (a) Effect of ZnO and ZnO/WO3 heterojunction on the [2+2] photocycloaddition of CHOE and QC; (b)Effect of SiO2 on the [2+2] photocycloaddition of NBD and CHOE
| Fuel | Catalysts | Density (20℃)/(g/cm3) | NHOC/(MJ/kg) | Viscosity (-20℃)/(mm2/s) | Freezing point/℃ |
|---|---|---|---|---|---|
| QC | — | 0.982 | 44.38 | 1.92 | -44 |
| 1-adduct | — | 0.986 | 41.72 | 41.68 | <-65 |
QC/1-adduct (57%(mass)) | — | 0.985 | 42.58 | 8.25 | <-60 |
QC/1-adduct (60%(mass)) | ZnO | 0.985 | 42.60 | 8.04 | <-60 |
QC/1-adduct (83%(mass)) | ZnO/WO3 (2.5 mg) | 0.984 | 42.89 | 6.16 | <-60 |
QC/1-adduct (120%(mass)) | ZnO/WO3 (5.0 mg) | 0.984 | 43.17 | 5.07 | <-60 |
QC/1-adduct (172%(mass)) | ZnO/WO3 (40.0 mg) | 0.983 | 43.48 | 4.09 | <-60 |
表1 QC、1-adduct以及不同催化条件下得到的混合燃料的性质
Table 1 Properties of QC, 1-adduct and blending fuels obtained under different catalytic conditions
| Fuel | Catalysts | Density (20℃)/(g/cm3) | NHOC/(MJ/kg) | Viscosity (-20℃)/(mm2/s) | Freezing point/℃ |
|---|---|---|---|---|---|
| QC | — | 0.982 | 44.38 | 1.92 | -44 |
| 1-adduct | — | 0.986 | 41.72 | 41.68 | <-65 |
QC/1-adduct (57%(mass)) | — | 0.985 | 42.58 | 8.25 | <-60 |
QC/1-adduct (60%(mass)) | ZnO | 0.985 | 42.60 | 8.04 | <-60 |
QC/1-adduct (83%(mass)) | ZnO/WO3 (2.5 mg) | 0.984 | 42.89 | 6.16 | <-60 |
QC/1-adduct (120%(mass)) | ZnO/WO3 (5.0 mg) | 0.984 | 43.17 | 5.07 | <-60 |
QC/1-adduct (172%(mass)) | ZnO/WO3 (40.0 mg) | 0.983 | 43.48 | 4.09 | <-60 |
| [1] | Hu Y C, Zhao Y Y, Li N, et al. Sustainable production of high-energy-density jet fuel via cycloaddition reactions[J]. Journal of Energy Chemistry, 2024, 95: 712-722. |
| [2] | 刘宁, 史成香, 潘伦, 等. 生物质替代石油原料合成高密度燃料的研究进展[J]. 燃料化学学报, 2021, 49(12): 1780-1790. |
| Liu N, Shi C X, Pan L, et al. Progress on using biomass derivatives to replace petroleum for synthesis of high-density fuels[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1780-1790. | |
| [3] | Wang X Y, Jia T H, Pan L, et al. Review on the relationship between liquid aerospace fuel composition and their physicochemical properties[J]. Transactions of Tianjin University, 2021, 27(2): 87-109. |
| [4] | Zhang X W, Pan L, Wang L, et al. Review on synthesis and properties of high-energy-density liquid fuels: hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125. |
| [5] | 郭建忠, 蒋妮, 程新荣, 等. 空天动力新型高性能燃料发展趋势及建议[J]. 空天技术, 2023(3): 79-87. |
| Guo J Z, Jiang N, Cheng X R, et al. Development trend and suggestion of new high performance fuel for aerospace propulsion[J]. Aerospace Technology, 2023(3): 79-87. | |
| [6] | Poplata S, Tröster A, Zou Y Q, et al. Recent advances in the synthesis of cyclobutanes by olefin [2+2] photocycloaddition reactions[J]. Chemical Reviews, 2016, 116(17): 9748-9815. |
| [7] | Trimble J S, Crawshaw R, Hardy F J, et al. A designed photoenzyme for enantioselective [2+2] cycloadditions[J]. Nature, 2022, 611(7937): 709-714. |
| [8] | Chen Y, Zhang X F, Guo X L, et al. Mechanism and kinetics of self-sensitized photocycloaddition of cyclohexenone and norbornene[J]. AIChE Journal, 2024, 70(5): e18369. |
| [9] | Liu Y, Chen Y, Ma S, et al. Synthesis of advanced fuel with density higher than 1 g/mL by photoinduced [2+2] cycloaddition of norbornene[J]. Fuel, 2022, 318: 123629. |
| [10] | 余锐, 刘显龙, 史成香, 等. 高能碳氢燃料绿色合成技术研究进展[J]. 含能材料, 2022, 30(11): 1167-1176. |
| Yu R, Liu X L, Shi C X, et al. Review on green synthesis of high-energy-density hydrocarbon fuel[J]. Chinese Journal of Energetic Materials, 2022, 30(11): 1167-1176. | |
| [11] | Pan L, Zou J J, Zhang X W, et al. Photoisomerization of norbornadiene to quadricyclane using transition metal doped TiO2 [J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8526-8531. |
| [12] | Shen C, Shang M J, Zhang H, et al. A UV-LEDs based photomicroreactor for mechanistic insights and kinetic studies in the norbornadiene photoisomerization[J]. AIChE Journal, 2020, 66(2): e16841. |
| [13] | Zou J J, Liu Y, Pan L, et al. Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and Cr)-incorporated Ti-MCM-41[J]. Applied Catalysis B: Environmental, 2010, 95(3/4): 439-445. |
| [14] | Li R, Ma B C, Huang W, et al. Photocatalytic regioselective and stereoselective [2 + 2] cycloaddition of styrene derivatives using a heterogeneous organic photocatalyst[J]. ACS Catalysis, 2017, 7(5): 3097-3101. |
| [15] | Zhao J N, Brosmer J L, Tang Q X, et al. Intramolecular crossed [2+2] photocycloaddition through visible light-induced energy transfer[J]. Journal of the American Chemical Society, 2017, 139(29): 9807-9810. |
| [16] | Xie J J, Pan L, Nie G K, et al. Photoinduced cycloaddition of biomass derivatives to obtain high-performance spiro-fuel[J]. Green Chemistry, 2019, 21(21): 5886-5895. |
| [17] | Xie J J, Zhang X W, Shi C X, et al. Self-photosensitized [2 + 2] cycloaddition for synthesis of high-energy-density fuels[J]. Sustainable Energy & Fuels, 2020, 4(2): 911-920. |
| [18] | Guo L R, Chu R C, Hao X Y, et al. Ag3PO4 enables the generation of long-lived radical cations for visible light-driven [2+2] and [4+2] pericyclic reactions[J]. Nature Communications, 2024, 15: 979. |
| [19] | Jaiswal K, Mahanta M, De M. Nanomaterials in photocatalysed organic transformations: development, prospects and challenges[J]. Chemical Communications, 2023, 59(40): 5987-6003. |
| [20] | Lin Y X, Avvacumova M, Zhao R L, et al. Triplet energy transfer from lead halide perovskite for highly selective photocatalytic 2+2 cycloaddition[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25357-25365. |
| [21] | Turlington M D, Ahmed S, Schanze K S. Radical cation Diels-Alder reaction by photocatalysis at a dye sensitized photoanode[J]. ACS Catalysis, 2024, 14(16): 12512-12517. |
| [22] | Nie G K, Wang H Y, Li Q, et al. Co-conversion of lignocellulosic derivatives to jet fuel blending by an efficient hydrophobic acid resin[J]. Applied Catalysis B: Environmental, 2021, 292: 120181. |
| [23] | Hu J X, Ai M H, Liu X L, et al. [2+2] and [2+1] cycloaddition of myrcene for synthesis of highly strained bio-fuels with high density and high impulse[J]. Energetic Materials Frontiers, 2025, 6(1): 84-94. |
| [24] | Shu Y M, Wang X Y, Jia T H, et al. Acid-catalyzed rearrangement of biomass polycyclic sesquiterpene derivatives to high-performance alkyl-adamantanes[J]. Chemical Engineering Science, 2023, 277: 118851. |
| [25] | Chen Y, Shu Y M, Ai M H, et al. Mechanism of Brønsted-acid-promoted self-photosensitized [2+2] cycloaddition for synthesis of high-performance bio-spiral fuel[J]. Green Energy & Environment, 2025, 10(3): 585-597. |
| [26] | Rudakova M A, Zarezin D P, Shorunov S V, et al. High-energy-density liquid spiro-norbornanes from methylenenorbornane[J]. Energy & Fuels, 2022, 36(19): 11930-11939. |
| [27] | 王磊, 张香文, 邹吉军, 等. 密度大于1的高密度液体碳氢燃料合成及复配研究[J]. 含能材料, 2009, 17(2): 157-160, 201. |
| Wang L, Zhang X W, Zou J J, et al. Synthesis and blending of high-density hydrocarbon fuels with density beyond 1.0 g·cm-3 [J]. Chinese Journal of Energetic Materials, 2009, 17(2):157-160, 201. | |
| [28] | 孔冲亚, 谭芳芳, 王一卓, 等. 生物质多环碳氢高密度航空燃料合成[J]. 化学进展, 2024, 36(3): 448-462. |
| Kong C Y, Tan F F, Wang Y Z, et al. Synthesis of multi-cyclic hydrocarbon high-density aviation fuels from biomass[J]. Progress in Chemistry, 2024, 36(3): 448-462. | |
| [29] | Chen Y, Wang L, Gao R J, et al. Polarization-enhanced direct Z-scheme ZnO-WO3- x nanorod arrays for efficient piezoelectric-photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental, 2019, 259: 118079. |
| [30] | Ai M H, Peng Z H, Li X D, et al. Piezoelectric-enhanced n-TiO2/BaTiO3/p-TiO2 heterojunction for highly efficient photoelectrocatalysis[J]. Green Energy & Environment, 2024, 9(9): 1466-1476. |
| [31] | Zhang J, E X T F, Yang B, et al. Synthesis of highly strained cyclobutane fuels via room-temperature-integrated oxidation/[2+2] cycloaddition of lignocellulose-based cyclic ketones and cyclic alcohols[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(49): 17647-17655. |
| [32] | Pan L, Feng R, Peng H, et al. A solar-energy-derived strained hydrocarbon as an energetic hypergolic fuel[J]. RSC Advances, 2014, 4(92): 50998-51001. |
| [1] | 张彬怡, 孙少东, 姚谦, 蔡文河, 张惠宇, 李成新. 煤制甲醇耦合固体氧化物燃料电池混合系统研究[J]. 化工学报, 2025, 76(9): 4658-4669. |
| [2] | 赵维, 邢文乐, 韩朝旭, 袁兴中, 蒋龙波. g-C3N4基非金属异质结光催化降解水中有机污染物的研究进展[J]. 化工学报, 2025, 76(9): 4752-4769. |
| [3] | 唐羽丰, 陶春珲, 王永正, 李印辉, 段然, 赵泽一, 马和平. 超高比表面积碳基多孔吸附剂制备及其Kr气存储性能研究[J]. 化工学报, 2025, 76(7): 3339-3349. |
| [4] | 王子恒, 李文怀, 周嵬. 图形电极在固体氧化物燃料电池中的应用[J]. 化工学报, 2025, 76(7): 3153-3171. |
| [5] | 段浩, 王文超, 刘栋, 尹晓军, 胡二江, 曾科. 甲醇喷射时刻对甲醇/柴油双直喷发动机性能的影响[J]. 化工学报, 2025, 76(7): 3552-3560. |
| [6] | 王珺仪, 夏章讯, 景粉宁, 王素力. 基于重整气的高温聚合物电解质膜燃料电池电化学阻抗谱弛豫时间分布研究[J]. 化工学报, 2025, 76(7): 3509-3520. |
| [7] | 陆学瑞, 周帼彦, 方琦, 俞孟正, 张秀成, 涂善东. 固体氧化物燃料电池外重整器积炭效应数值模拟研究[J]. 化工学报, 2025, 76(7): 3295-3304. |
| [8] | 麦棹铭, 武颖韬, 王维, 穆海宝, 黄佐华, 汤成龙. 正十二烷-甲烷双燃料非线性着火特性及稀释气体效应研究[J]. 化工学报, 2025, 76(6): 3115-3124. |
| [9] | 陶春珲, 李印辉, 傅钰, 段然, 赵泽一, 唐羽丰, 张罡, 马和平. 不同吸附剂对低浓度Kr气的选择性吸附与纯化[J]. 化工学报, 2025, 76(5): 2358-2366. |
| [10] | 梁铣, 张晓燕, 魏亦军, 郑云芳, 高全涵, 徐迈, 王凤武. 碱性膜燃料电池中聚电解质的耐久性研究进展[J]. 化工学报, 2025, 76(4): 1447-1462. |
| [11] | 张玮杰, 何甲文, 张一鸣, 李德立, 胡光亚, 蔡骁, 王金华, 黄佐华. 燃料分层对多级旋流甲烷燃烧流场和火焰结构影响研究[J]. 化工学报, 2025, 76(4): 1754-1764. |
| [12] | 刘彦贝, 王若名, 刘娟, Raza Taimoor, 陆玉正, Raza Rizwan, 朱斌, 李松波, 安胜利, 云斯宁. CeO2@La0.6Sr0.4Co0.2Fe0.8O3-δ 电解质的制备及半导体离子燃料电池性能研究[J]. 化工学报, 2025, 76(3): 1353-1362. |
| [13] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
| [14] | 戴文智, 沈雄健, 宋晓博, 杨新乐. 生物质双级蒸发双回热有机朗肯循环系统环境分析[J]. 化工学报, 2025, 76(3): 1230-1242. |
| [15] | 姚国家, 王志, 苏昂, 冯东阁, 唐宏, 孙灵芳. 空气系数对煤粉预热解燃烧特性的影响分析[J]. 化工学报, 2025, 76(3): 1243-1252. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号