化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5617-5629.DOI: 10.11949/0438-1157.20250480
收稿日期:2025-05-06
修回日期:2025-07-02
出版日期:2025-11-25
发布日期:2025-12-19
通讯作者:
何玉荣
作者简介:曾宇飞(2001—),男,硕士研究生,fjszyf@126.com
基金资助:
Yufei ZENG1,2(
), Tianqi TANG1,2, Yurong HE1,2(
)
Received:2025-05-06
Revised:2025-07-02
Online:2025-11-25
Published:2025-12-19
Contact:
Yurong HE
摘要:
水合物储氢具有环境友好、经济性高的优点,在储能领域具有广阔的应用前景。水合物合成前期易形成气体分子的过饱和状态,进而诱导生成纳米气泡,这会对水合物储氢效率产生影响。因此,本文以纳米气泡为研究对象,采用分子动力学数值模拟方法,围绕甲烷与氢气混合气体合成储氢水合物阶段,分析纳米气泡的演化规律,探究纳米气泡演化过程对气体分子扩散、水分子有序度和气体相互作用的影响。结果表明,纳米气泡的生成经历膨胀期与稳定期,可有效促进气体分子扩散。但纳米气泡对甲烷分子的促进作用强于对氢气分子,进而影响水合物的储氢密度。纳米气泡在膨胀期会提升水分子的有序度,在稳定期水分子的有序度逐渐趋于恒定。气泡内部的氢气分子倾向于在中心区域聚集分布,甲烷分子则富集于气液界面,该分布特征虽利于水合物成核,却可能影响水合物结构内的氢气含量。
中图分类号:
曾宇飞, 唐天琪, 何玉荣. 掺甲烷储氢水合物合成过程纳米气泡演化特性分子动力学模拟研究[J]. 化工学报, 2025, 76(11): 5617-5629.
Yufei ZENG, Tianqi TANG, Yurong HE. Molecular dynamics simulation of nanobubble evolution characteristics during synthesis of methane-doped hydrogen storage hydrate[J]. CIESC Journal, 2025, 76(11): 5617-5629.
| 原子 | 摩尔质量/(g/mol) | 势能参数ε/(kJ/mol) | 势能参数σ/nm | 电荷量q/e |
|---|---|---|---|---|
| H2O | ||||
| O | 16.000 | 0.882 | 0.317 | 0 |
| H | 1.008 | 0 | 0 | 0.590 |
| M(virtual site) | 0 | 0 | 0 | -1.178 |
| CH4 | ||||
| C | 12.011 | 0.276 | 0.035 | -0.240 |
| H | 1.008 | 0.125 | 0.250 | 0.060 |
| H2 | ||||
| H | 1.008 | 0 | 0 | 0.590 |
表1 模拟体系的相互作用参数和原子电荷[26,28-31]
Table 1 Interaction parameters and atomic charges of simulation systems[26.28-31]
| 原子 | 摩尔质量/(g/mol) | 势能参数ε/(kJ/mol) | 势能参数σ/nm | 电荷量q/e |
|---|---|---|---|---|
| H2O | ||||
| O | 16.000 | 0.882 | 0.317 | 0 |
| H | 1.008 | 0 | 0 | 0.590 |
| M(virtual site) | 0 | 0 | 0 | -1.178 |
| CH4 | ||||
| C | 12.011 | 0.276 | 0.035 | -0.240 |
| H | 1.008 | 0.125 | 0.250 | 0.060 |
| H2 | ||||
| H | 1.008 | 0 | 0 | 0.590 |
| 波峰 | 文献[ | 文献[ | |||
|---|---|---|---|---|---|
| ri /Å | φ/% | ri /Å | φ/% | ||
| 第一波峰 | 2.76 | 2.71 | 1.8 | 2.76 | 0 |
| 第二波峰 | 4.52 | 4.43 | 1.9 | 4.54 | 0.4 |
| 第三波峰 | 6.46 | 6.33 | 2.0 | 6.34 | 1.9 |
表2 特征波峰位置对比
Table 2 Comparison of the positions of characteristic wave peaks
| 波峰 | 文献[ | 文献[ | |||
|---|---|---|---|---|---|
| ri /Å | φ/% | ri /Å | φ/% | ||
| 第一波峰 | 2.76 | 2.71 | 1.8 | 2.76 | 0 |
| 第二波峰 | 4.52 | 4.43 | 1.9 | 4.54 | 0.4 |
| 第三波峰 | 6.46 | 6.33 | 2.0 | 6.34 | 1.9 |
| 气体分子 | D0/(103 cm2/s) | D1/(103 cm2/s) | μ1 | D100/(103 cm2/s) | μ100 | D200/(103 cm2/s) | μ200 |
|---|---|---|---|---|---|---|---|
| 氢气 | 1.14 | 1.72 | 0.509 | 2.12 | 0.860 | 1.91 | 0.675 |
| 甲烷 | 0.488 | 1.08 | 1.21 | 1.55 | 2.18 | 1.49 | 2.05 |
表3 特征时刻氢气分子与甲烷分子扩散系数
Table 3 Diffusion coefficients of hydrogen molecules and methane molecules at characteristic moments
| 气体分子 | D0/(103 cm2/s) | D1/(103 cm2/s) | μ1 | D100/(103 cm2/s) | μ100 | D200/(103 cm2/s) | μ200 |
|---|---|---|---|---|---|---|---|
| 氢气 | 1.14 | 1.72 | 0.509 | 2.12 | 0.860 | 1.91 | 0.675 |
| 甲烷 | 0.488 | 1.08 | 1.21 | 1.55 | 2.18 | 1.49 | 2.05 |
| [1] | 岳子瀚, 龙臻, 周雪冰, 等. sⅡ型水合物储氢研究进展[J]. 化工进展, 2023, 42(10): 5121-5134. |
| Yue Z H, Long Z, Zhou X B, et al. State of the art on hydrogen storage of sⅡ clathrate hydrate[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5121-5134. | |
| [2] | 范以薇, 刘威, 李盈盈, 等. 有机液体储氢中全氢化乙基咔唑催化脱氢研究进展[J]. 化工学报, 2024, 75(4): 1198-1208. |
| Fan Y W, Liu W, Li Y Y, et al. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier[J]. CIESC Journal, 2024, 75(4): 1198-1208. | |
| [3] | Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861): 353-358. |
| [4] | 刘奕扬, 邢志祥, 刘烨铖, 等. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| Liu Y Y, Xing Z X, Liu Y C, et al. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations[J]. CIESC Journal, 2025, 76(9): 4694-4708. | |
| [5] | Epelle E I, Obande W, Udourioh G A, et al. Perspectives and prospects of underground hydrogen storage and natural hydrogen[J]. Sustainable Energy & Fuels, 2022, 6(14): 3324-3343. |
| [6] | Hassanpouryouzband A, Joonaki E, Edlmann K, et al. Offshore geological storage of hydrogen: is this our best option to achieve net-zero?[J]. ACS Energy Letters, 2021, 6(6): 2181-2186. |
| [7] | Andersson J, Grönkvist S. Large-scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11901-11919. |
| [8] | Milanese C, Jensen T R, Hauback B C, et al. Complex hydrides for energy storage[J]. International Journal of Hydrogen Energy, 2019, 44(15): 7860-7874. |
| [9] | Mao W L, Mao H K. Hydrogen storage in molecular compounds[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(3): 708-710. |
| [10] | Zhang J S, Lee J W. Equilibrium of hydrogen + cyclopentane and carbon dioxide + cyclopentane binary hydrates[J]. Journal of Chemical & Engineering Data, 2009, 54(2): 659-661. |
| [11] | Tsuda T, Ogata K, Hashimoto S, et al. Storage capacity of hydrogen in tetrahydrothiophene and furan clathrate hydrates[J]. Chemical Engineering Science, 2009, 64(19): 4150-4154. |
| [12] | Trueba A T, Radović I R, Zevenbergen J F, et al. Kinetics measurements and in situ Raman spectroscopy of formation of hydrogen-tetrabutylammonium bromide semi-hydrates[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5790-5797. |
| [13] | Jr E D S. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353-363. |
| [14] | Koh C A, Sum A K, Sloan E D. Gas hydrates: unlocking the energy from icy cages[J]. Journal of Applied Physics, 2009, 106(6): 061101. |
| [15] | Wang P F, Li K H, Yang J Y, et al. Experimental and theoretical study on dissociation thermodynamics and kinetics of hydrogen-propane hydrate[J]. Chemical Engineering Journal, 2021, 426: 131279. |
| [16] | Wang P F, Long H, Teng Y, et al. Investigation of hydrogen-propane hydrate formation mechanism and optimal pressure range via hydrate-based hydrogen storage[J]. Fuel, 2024, 361: 130791. |
| [17] | Bao W C, Teng Y, Wang P F, et al. Molecular analysis of hydrogen-propane hydrate formation mechanism and its influencing factors for hydrogen storage[J]. International Journal of Hydrogen Energy, 2024, 50: 697-708. |
| [18] | Zhang Y, Zhao L, Deng S, et al. Effect of nanobubble evolution on hydrate process: a review[J]. Journal of Thermal Science, 2019, 28(5): 948-961. |
| [19] | Fang B, Moultos O A, Lv T, et al. Effects of nanobubbles on methane hydrate dissociation: a molecular simulation study[J]. Fuel, 2023, 345: 128230. |
| [20] | Zhou Z W, Feng J C, Zeng X Y, et al. Revealing the kinetic behaviors of hydrate formation on bubble surface with different pressure gradients in deep-sea methane seepage areas of the South China Sea[J]. Energy, 2024, 308: 132808. |
| [21] | 张炜, 李昊阳, 徐纯刚, 等. 气体水合物生成微观机理及分析方法研究进展[J]. 化工学报, 2022, 73(9): 3815-3827. |
| Zhang W, Li H Y, Xu C G, et al. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation[J]. CIESC Journal, 2022, 73(9): 3815-3827. | |
| [22] | Wang Y H, Yin K D, Fan S S, et al. The molecular insight into the "zeolite-ice" as hydrogen storage material[J]. Energy, 2021, 217: 119406. |
| [23] | Chen S Y, Wang Y H, Fan S S, et al. An innovative nucleation method for high and rapid hydrogen storage based on clathrate hydrates[J]. Journal of Materials Chemistry A, 2024, 12(19): 11424-11438. |
| [24] | 严六明, 朱素华. 分子动力学模拟的理论与实践[M]. 北京: 科学出版社, 2013. |
| Yan L M, Zhu S H. Theory and Practice of Molecular Dynamics Simulation[M]. Beijing: Science Press, 2013. | |
| [25] | Boda D, Henderson D. The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture[J]. Molecular Physics, 2008, 106(20): 2367-2370. |
| [26] | Abascal J F, Sanz E, Fernández R G, et al. A potential model for the study of ices and amorphous water: TIP4P/ice[J]. The Journal of Chemical Physics, 2005, 122(23): 234511. |
| [27] | Abraham M J, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers[J]. SoftwareX, 2015, 1: 19-25. |
| [28] | Jorgensen W L, Tirado-Rives J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(19): 6665-6670. |
| [29] | Dodda L S, Vilseck J Z, Tirado-Rives J, et al. 1.14*CM1A-LBCC: localized bond-charge corrected CM1A charges for condensed-phase simulations[J]. The Journal of Physical Chemistry B, 2017, 121(15): 3864-3870. |
| [30] | Dodda L S, Cabeza de Vaca I, Tirado-Rives J, et al. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands[J]. Nucleic Acids Research, 2017, 45(W1): W331-W336. |
| [31] | Wang S Y, Hou K Y, Heinz H. Accurate and compatible force fields for molecular oxygen, nitrogen, and hydrogen to simulate gases, electrolytes, and heterogeneous interfaces[J]. Journal of Chemical Theory and Computation, 2021, 17(8): 5198-5213. |
| [32] | Essmann U, Perera L, Berkowitz M L, et al. A smooth particle mesh Ewald method[J]. The Journal of Chemical Physics, 1995, 103(19): 8577-8593. |
| [33] | Nosé S. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular Physics, 2002, 100(1): 191-198. |
| [34] | Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190. |
| [35] | Kondori J, Zendehboudi S, James L. New insights into methane hydrate dissociation: utilization of molecular dynamics strategy[J]. Fuel, 2019, 249: 264-276. |
| [36] | 万丽华, 梁德青, 关进安. 烃类水合物导热特性的分子动力学模拟[J]. 化工学报, 2014, 65(3): 792-796. |
| Wan L H, Liang D Q, Guan J A. Characteristic of thermal conduction in hydrocarbon hydrates using molecular dynamics method[J]. CIESC Journal, 2014, 65(3): 792-796. | |
| [37] | Dai C L, Hu Y, Wu Y N, et al. Effects of structural properties of alcohol molecules on decomposition of natural gas hydrates: a molecular dynamics study[J]. Fuel, 2020, 268: 117322. |
| [38] | Wu Y J, He Y R, Tang T Q, et al. Molecular dynamic simulations of methane hydrate formation between solid surfaces: implications for methane storage[J]. Energy, 2023, 262: 125511. |
| [39] | Rodger P M, Forester T R, Smith W. Simulations of the methane hydrate/methane gas interface near hydrate forming conditions conditions[J]. Fluid Phase Equilibria, 1996, 116(1/2): 326-332. |
| [40] | 张少冬, 夏宇, 张志兴, 等. 气体水合物分子动力学模拟研究进展[J]. 低碳化学与化工, 2025, 50(2): 137-147. |
| Zhang S D, Xia Y, Zhang Z X, et al. Research progress on molecular dynamics simulations of gas hydrates[J]. Low-Carbon Chemistry and Chemical Engineering, 2025, 50(2): 137-147. | |
| [41] | 杨海昌, 徐梦迪, 邢耀文, 等. 光滑及粗糙表面纳米气泡成核与生长动力学行为[J]. 物理学报, 2025, 74(2): 024702-1. |
| Yang H C, Xu M D, Xing Y W, et al. Nucleation and growth dynamics of nanobubbles on smooth and rough surfaces[J]. Acta Physica Sinica, 2025, 74(2): 024702-1. | |
| [42] | Makaremi M, Jordan K D, Guthrie G D, et al. Multiphase Monte Carlo and molecular dynamics simulations of water and CO2 intercalation in montmorillonite and beidellite[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15112-15124. |
| [1] | 彭建斌, 李明, 谢军龙, 陈建业. 液氢接收终端液氢泄漏扩散及爆炸超压研究[J]. 化工学报, 2025, 76(S1): 453-461. |
| [2] | 丁昊, 王林, 刘豪. R290/R245fa汽液相平衡混合规则对比研究[J]. 化工学报, 2025, 76(S1): 9-16. |
| [3] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [4] | 刘璐, 王文玥, 王腾, 王太, 董新宇, 汤建成, 王少恒. 基于双混合工质深冷的氢液化工艺优化与分析[J]. 化工学报, 2025, 76(9): 4933-4943. |
| [5] | 胡国祥, 朱忆魁, 龙华, 刘晓雯, 熊勤钢. 组分配比影响氯化胆碱-乳酸低共熔溶剂碱木质素溶解度的底层机理研究[J]. 化工学报, 2025, 76(9): 4449-4461. |
| [6] | 刘奕扬, 邢志祥, 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| [7] | 邹家庆, 张肇钰, 张建国, 张博宇, 刘定胜, 毛庆, 王挺, 李建军. 碱水制氢电解槽极板通道中气泡的生成及演化性质[J]. 化工学报, 2025, 76(9): 4786-4799. |
| [8] | 李相海, 赖德林, 孔纲, 周健. 双仿生表面水下疏油协同机制的分子动力学模拟研究[J]. 化工学报, 2025, 76(9): 4551-4562. |
| [9] | 廖兵, 祝鑫宇, 黄倩倩, 胥雯, 寇梦瑶, 郭娜. 盐酸羟胺强化芬顿体系在近中性条件下去除2,4-DCP的性能及机理研究[J]. 化工学报, 2025, 76(8): 4273-4283. |
| [10] | 刘世昌, 李一白, 王靖, 刘永忠. 氢气驱动电化学捕碳系统的模块化设计与优化[J]. 化工学报, 2025, 76(8): 4108-4118. |
| [11] | 李科, 谢昊琳, 文键. 耦合多重蒸气冷却屏的液氢储罐绝热性能的多目标遗传算法优化[J]. 化工学报, 2025, 76(8): 4217-4227. |
| [12] | 高正, 汪辉, 屈治国. 数据驱动辅助高通量筛选阴离子柱撑金属有机框架储氢[J]. 化工学报, 2025, 76(8): 4259-4272. |
| [13] | 周运桃, 崔丽凤, 张杰, 于富红, 李新刚, 田野. Ga2O3调控CuCeO催化CO2加氢制甲醇的研究[J]. 化工学报, 2025, 76(8): 4042-4051. |
| [14] | 刘建海, 王磊, 鲁朝金, 白志山, 张平雨. 耦合电化学与多相流模型的电解槽性能研究[J]. 化工学报, 2025, 76(8): 3885-3893. |
| [15] | 王御风, 罗小雪, 范鸿亮, 吴白婧, 李存璞, 魏子栋. 耦合电解水制氢的绿色有机电合成——电极界面调控策略综述[J]. 化工学报, 2025, 76(8): 3753-3771. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号