化工学报 ›› 2025, Vol. 76 ›› Issue (11): 5617-5629.DOI: 10.11949/0438-1157.20250480

• 专栏:能源利用过程中的多相流与传热 • 上一篇    下一篇

掺甲烷储氢水合物合成过程纳米气泡演化特性分子动力学模拟研究

曾宇飞1,2(), 唐天琪1,2, 何玉荣1,2()   

  1. 1.哈尔滨工业大学能源科学与工程学院,黑龙江 哈尔滨 150001
    2.黑龙江省新型储能材料与储能过程研究重点实验室,黑龙江 哈尔滨 150001
  • 收稿日期:2025-05-06 修回日期:2025-07-02 出版日期:2025-11-25 发布日期:2025-12-19
  • 通讯作者: 何玉荣
  • 作者简介:曾宇飞(2001—),男,硕士研究生,fjszyf@126.com
  • 基金资助:
    黑龙江省自然科学基金联合引导项目(LH2023E046)

Molecular dynamics simulation of nanobubble evolution characteristics during synthesis of methane-doped hydrogen storage hydrate

Yufei ZENG1,2(), Tianqi TANG1,2, Yurong HE1,2()   

  1. 1.School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
    2.Heilongjiang Key Laboratory of New Energy Storage Materials and Processes, Harbin 150001, Heilongjiang, China
  • Received:2025-05-06 Revised:2025-07-02 Online:2025-11-25 Published:2025-12-19
  • Contact: Yurong HE

摘要:

水合物储氢具有环境友好、经济性高的优点,在储能领域具有广阔的应用前景。水合物合成前期易形成气体分子的过饱和状态,进而诱导生成纳米气泡,这会对水合物储氢效率产生影响。因此,本文以纳米气泡为研究对象,采用分子动力学数值模拟方法,围绕甲烷与氢气混合气体合成储氢水合物阶段,分析纳米气泡的演化规律,探究纳米气泡演化过程对气体分子扩散、水分子有序度和气体相互作用的影响。结果表明,纳米气泡的生成经历膨胀期与稳定期,可有效促进气体分子扩散。但纳米气泡对甲烷分子的促进作用强于对氢气分子,进而影响水合物的储氢密度。纳米气泡在膨胀期会提升水分子的有序度,在稳定期水分子的有序度逐渐趋于恒定。气泡内部的氢气分子倾向于在中心区域聚集分布,甲烷分子则富集于气液界面,该分布特征虽利于水合物成核,却可能影响水合物结构内的氢气含量。

关键词: 氢, 水合物, 甲烷, 分子模拟, 纳米气泡

Abstract:

Hydrogen storage in hydrates offers advantages of environmental friendliness and high economic efficiency, and has broad application prospects in energy storage. In the early stages of hydrate synthesis, gas molecules tend to form supersaturated states, which in turn induce the formation of nanobubbles and affect the hydrogen storage efficiency of hydrates. Therefore, this paper takes nanobubbles as the research object and adopts the molecular dynamics method to analyze the evolution law of nanobubbles and explore the influence of nanobubble evolution process on gas molecular diffusion, water molecular order and gas interaction during the synthesis of hydrogen-storage hydrates using a mixture of methane and hydrogen gases. The results show that the formation of nanobubbles undergoes an expansion phase and a stabilization phase, effectively promoting gas molecule diffusion. However, the promoting effect of nanobubbles on methane molecules is stronger than that on hydrogen molecules, which affects the hydrogen-storage density of hydrates. Nanobubbles improve the order of water molecules during the expansion phase, and the order of water molecules gradually tends to be constant during the stabilization phase. Hydrogen molecules tend to accumulate in the central region of the nanobubble, while methane molecules are enriched at the gas-liquid interface. Although this distribution is conducive to hydrate nucleation, it may affect the hydrogen content in hydrate structures.

Key words: hydrogen, hydrate, methane, molecular simulation, nanobubbles

中图分类号: