化工学报 ›› 2025, Vol. 76 ›› Issue (9): 4551-4562.DOI: 10.11949/0438-1157.20250313
收稿日期:2025-03-27
修回日期:2025-05-01
出版日期:2025-09-25
发布日期:2025-10-23
通讯作者:
周健
作者简介:李相海(2000—),男,硕士研究生,1282912734 @qq.com
基金资助:
Xianghai LI1, Delin LAI2, Gang KONG2, Jian ZHOU1(
)
Received:2025-03-27
Revised:2025-05-01
Online:2025-09-25
Published:2025-10-23
Contact:
Jian ZHOU
摘要:
通过分子动力学(MD)模拟方法,考察了多巴胺接枝的三甲胺N-氧化物(DOPA-TMAO)新型两性离子化合物的水下疏油性能,并将其与多巴胺接枝的甲基丙烯酸磺基甜菜碱(DOPA-SBMA)两性离子化合物的水下疏油性能进行了对比,还考察了不同盐浓度环境下DOPA-TMAO体系的水下疏油性能变化。结果表明,与DOPA-SBMA体系相比,纯水环境中DOPA-TMAO体系的水下疏油接触角更大,且有着厚度更大的水化层,其疏油能力更强。DOPA-TMAO体系在含盐水溶液中展现出良好的抗盐特性,这与TMAO分子中正负基团的极短间距有关,这进一步拓宽了其应用潜力。进一步研究发现,DOPA的邻苯二酚基团通过范德华力与静电相互作用显著增强表面黏附性能,与TMAO的水合屏障功能形成“锚固-屏蔽”协同效应,从而使DOPA-TMAO体系保持稳定的疏油性能;同时,TMAO优异的水合作用与抗盐机制的协同作用保障了高盐环境下的稳定疏油性能。基于贻贝仿生策略,本研究成功提升了两性离子表面在水下疏油过程中的稳定性,并揭示了新型两性离子TMAO在疏油和抗盐性能方面的显著优势,为其在复杂环境中的应用提供了理论依据。
中图分类号:
李相海, 赖德林, 孔纲, 周健. 双仿生表面水下疏油协同机制的分子动力学模拟研究[J]. 化工学报, 2025, 76(9): 4551-4562.
Xianghai LI, Delin LAI, Gang KONG, Jian ZHOU. Molecular dynamics simulations on synergistic underwater oleophobicity mechanism of dual-biomimic surfaces[J]. CIESC Journal, 2025, 76(9): 4551-4562.
| 体系 | 水分子配位数 | 停留时间τ/ps | 氢键总数 | 平均氢键数 |
|---|---|---|---|---|
| DOPA-SBMA | 7.19 | 56.9±3.4 | 155 | 1.6 |
| DOPA-TMAO | 10.14 | 69.7±4.8 | 305 | 3.2 |
表1 纯水环境下不同体系的水分子配位数、水分子停留时间及氢键数目
Table 1 Residence time of water molecules and hydrogen bond counts in different systems under pure aqueous environment
| 体系 | 水分子配位数 | 停留时间τ/ps | 氢键总数 | 平均氢键数 |
|---|---|---|---|---|
| DOPA-SBMA | 7.19 | 56.9±3.4 | 155 | 1.6 |
| DOPA-TMAO | 10.14 | 69.7±4.8 | 305 | 3.2 |
图11 DOPA-TMAO体系盐溶液环境中ON--Na+与N+-Cl⁻的径向分布函数
Fig.11 Radial distribution functions of ON--Na+ and N+-Cl⁻ in the DOPA-TMAO system within a saline solution environment
| [1] | 国家统计局. 废水中主要污染物排放年度数据[DS/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0C04&sj=2024, 2024. |
| National Bureau of Statistics. Annual data on the discharge of major pollutants in wastewater[DS/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0C04&sj=2024, 2024. | |
| [2] | 国家统计局. 工业污染治理投资年度数据[DS/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0C0I&sj=2024, 2024. |
| National Bureau of Statistics. Annual investment data for industrial pollution control[DS/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0C0I&sj=2024, 2024. | |
| [3] | Xie S R, Jiang W, Feng C M, et al. Coral skeletons reveal the impacts of oil pollution on seawater chemistry in the northern South China Sea[J]. Chemosphere, 2023, 338: 139632. |
| [4] | Dai X M, Sun N, Nielsen S O, et al. Hydrophilic directional slippery rough surfaces for water harvesting[J]. Science Advances, 2018, 4(3): eaaq0919. |
| [5] | Liu D P, Zhu J, Qiu M, et al. Antifouling performance of poly(lysine methacrylamide)-grafted PVDF microfiltration membrane for solute separation[J]. Separation and Purification Technology, 2016, 171: 1-10. |
| [6] | Yang Y L, Li M M, Zhu L J, et al. Zwitterionic polyvinylidene fluoride membranes with strong underwater superoleophobicity and oil-fouling resistance for oily water purification[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107593. |
| [7] | Manabe K, Saikawa M, Sato I, et al. Biomimetic 3D-printed armored structures for durable superhydrophobic surfaces: integrating macroprotection and nanofunctionality[J]. ACS Applied Polymer Materials, 2024, 6(22): 13701-13709. |
| [8] | Meng F, Liu J L, Arai N. Investigating the nanostructure design mechanism behind the hydrophobicity of the biomimetic surface[J]. ACS Applied Materials & Interfaces, 2025, 17(15): 23394-23404. |
| [9] | Sundaram H S, Han X, Nowinski A K, et al. One-step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6664-6671. |
| [10] | Zhang Y, Yang J L, Zhao Y L, et al. Anti-fouling ternary zwitterionic coating membrane with strong surface hydration and salt resistant for efficient long-term emulsion separation in high salinity marine environment[J]. Journal of Membrane Science, 2024, 710: 123167. |
| [11] | Miao Z H, Zhou J. Multiscale modeling and simulation of zwitterionic anti-fouling materials[J]. Langmuir, 2025, 41(12): 7980-7995. |
| [12] | Liu H Y, Yang L, Dou B J, et al. Zwitterionic hydrogel-coated cotton fabrics with underwater superoleophobic, self-healing and anti-fouling performances for oil-water separation[J]. Separation and Purification Technology, 2021, 279: 119789. |
| [13] | Cheng G, Liao M R, Zhao D H, et al. Molecular understanding on the underwater oleophobicity of self-assembled monolayers: zwitterionic versus nonionic[J]. Langmuir, 2017, 33(7): 1732-1741. |
| [14] | Liao M R, Cheng G, Zhou J. Underwater superoleophobicity of pseudozwitterionic SAMs: effects of chain length and ionic strength[J]. The Journal of Physical Chemistry C, 2017, 121(32): 17390-17401. |
| [15] | Chen Z, Liao M R, Zhang L Z, et al. Molecular simulations on the hydration and underwater oleophobicity of zwitterionic self-assembled monolayers[J]. AIChE Journal, 2021, 67(2): e17103. |
| [16] | Niu J Q, Wang H H, Chen J, et al. Bio-inspired zwitterionic copolymers for antifouling surface and oil-water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 127016. |
| [17] | Song X Z, Man J, Zhang X K, et al. Atomistic insights into the ionic response and mechanism of antifouling zwitterionic polymer brushes[J]. Small, 2025, 21(6): 2570043. |
| [18] | Ohto T, Backus E H G, Mizukami W, et al. Unveiling the amphiphilic nature of TMAO by vibrational sum frequency generation spectroscopy[J]. The Journal of Physical Chemistry C, 2016, 120(31): 17435-17443. |
| [19] | Bruce E E, van der Vegt N F A. Molecular scale solvation in complex solutions[J]. Journal of the American Chemical Society, 2019, 141(33): 12948-12956. |
| [20] | Ganguly P, Boserman P, van der Vegt N F A, et al. Trimethylamine N-oxide counteracts urea denaturation by inhibiting protein-urea preferential interaction[J]. Journal of the American Chemical Society, 2018, 140(1): 483-492. |
| [21] | Li B W, Jain P, Ma J R, et al. Trimethylamine N-oxide-derived zwitterionic polymers: a new class of ultralow fouling bioinspired materials[J]. Science Advances, 2019, 5(6): eaaw9562. |
| [22] | Huang H, Zhang C C, Crisci R, et al. Strong surface hydration and salt resistant mechanism of a new nonfouling zwitterionic polymer based on protein stabilizer TMAO[J]. Journal of the American Chemical Society, 2021, 143(40): 16786-16795. |
| [23] | Yang J, Lin L G, Tang F L, et al. Superwetting membrane by co-deposition technique using a novel N-oxide zwitterionic polymer assisted by bioinspired dopamine for efficient oil-water separation[J]. Separation and Purification Technology, 2023, 318: 123965. |
| [24] | Jiang Y Z, Liu C Y, Li Y H, et al. Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation[J]. Journal of Membrane Science, 2019, 587: 117177. |
| [25] | Noguchi A, Masuda T, Chen C Q, et al. Hydrophilic surfaces from simple dip-coating method: amphiphilic block copolymers with zwitterionic group form antifouling coatings under atmospheric conditions[J]. Materials Advances, 2020, 1(8): 2737-2744. |
| [26] | Zhai Y D, Chen X Q, Yuan Z B, et al. A mussel-inspired catecholic ABA triblock copolymer exhibits better antifouling properties compared to a diblock copolymer[J]. Polymer Chemistry, 2020, 11(28): 4622-4629. |
| [27] | Han X T, Gong X. In situ, one-pot method to prepare robust superamphiphobic cotton fabrics for high buoyancy and good antifouling[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 31298-31309. |
| [28] | Krüger J M, Börner P H G. Accessing the next generation of synthetic mussel-glue polymers via mussel-inspired polymerization[J]. Angewandte Chemie International Edition, 2021, 60(12): 6408-6413. |
| [29] | Tao C, Jin M, Yao H, et al. Dopamine based adhesive nano-coatings on extracellular matrix (ECM) based grafts for enhanced host-graft interfacing affinity[J]. Nanoscale, 2021, 13(43): 18148-18159. |
| [30] | Zhang C, Zhou Y S, Han H J, et al. Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors[J]. ACS Nano, 2021, 15(1): 1785-1794. |
| [31] | Asha A B, Chen Y J, Narain R. Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering[J]. Chemical Society Reviews, 2021, 50(20): 11668-11683. |
| [32] | Liu X X, Jia K L, Ning J H, et al. A dual-biomimetic N-oxide-based zwitterionic coating for constructing antifouling membrane with exceptional emulsion separation performance[J]. Surface and Coatings Technology, 2025, 497: 131738. |
| [33] | Zhou Z, Shi Q H. Bioinspired dopamine and N-oxide-based zwitterionic polymer brushes for fouling resistance surfaces[J]. Polymers, 2024, 16(12): 1634. |
| [34] | Wang Y C, Li Y, Zhang Q L, et al. Bio-inspired co-deposition of dopamine and N-oxide zwitterionic polyethyleneimine to fabricate anti-fouling loose nanofiltration membranes for dye desalination[J]. Separation and Purification Technology, 2024, 349: 127801. |
| [35] | Li Y T, Liao M R, Zhou J. Catechol and its derivatives adhesion on graphene: insights from molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2018, 122(40): 22965-22974. |
| [36] | 徐威, 兰忠, 彭本利, 等. 微液滴在不同能量表面上润湿状态的分子动力学模拟[J]. 物理学报, 2015, 64(21): 374-381. |
| Xu W, Lan Z, Peng B L, et al. Molecular dynamics simulation on the wetting characteristic of micro-droplet on surfaces with different free energies[J]. Acta Physica Sinica, 2015, 64(21): 374-381. | |
| [37] | Wang Y X, Kiziltas A, Blanchard P, et al. Contact angle calculator: an automated, parametrized, and flexible code for contact angle estimation in visual molecular dynamics[J]. Journal of Chemical Information and Modeling, 2022, 62(24): 6302-6308. |
| [38] | Jiménez-Ángeles F, Firoozabadi A. Contact angle, liquid film, and liquid-liquid and liquid-solid interfaces in model oil-brine-substrate systems[J]. The Journal of Physical Chemistry C, 2016, 120(22): 11910-11917. |
| [39] | Steylaerts T, Vos R, James Shirley F, et al. Use of a piezo-electric microarrayer for site-specific, high throughput contact angle measurements[J]. Surfaces and Interfaces, 2019, 17: 100389. |
| [40] | Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. |
| [41] | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
| [42] | Vanommeslaeghe K, Raman E P, Mackerell A D. Automation of the CHARMM General Force Field (CGenFF) Ⅱ: assignment of bonded parameters and partial atomic charges[J]. Journal of Chemical Information & Modeling, 2012, 52(12): 3155-3168. |
| [43] | Berendsen H J C, Grigera J R, Straatsma T P. The missing term in effective pair potentials[J]. The Journal of Physical Chemistry, 1987, 91(24): 6269-6271. |
| [44] | Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. Journal of Chemical Theory and Computation, 2008, 4(3): 435-447. |
| [45] | Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review. A, General Physics, 1985, 31(3): 1695-1697. |
| [46] | Hess B, Bekker H, Berendsen H J C, et al. LINCS: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997, 18(12): 1463-1472. |
| [47] | Essmann U, Perera L, Berkowitz M L, et al. A smooth particle mesh Ewald method[J]. Journal of Chemical Physics, 1995, 103(19): 8577-8593. |
| [48] | Yeh I C, Berkowitz M L. Ewald summation for systems with slab geometry[J]. Journal of Chemical Physics, 1999, 111(7): 3155-3162. |
| [49] | Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. |
| [50] | Jiang H, Patel A J. Recent advances in estimating contact angles using molecular simulations and enhanced sampling methods[J]. Current Opinion in Chemical Engineering, 2019, 23: 130-137. |
| [51] | 郑直, 郭乃胜, 尤占平, 等. 废木油与石油沥青相容机制的分子动力学研究[J]. 化工学报, 2023, 74(10): 4037-4050. |
| Zheng Z, Guo N S, You Z P, et al. Research on compatibility mechanisms between waste wood oil and petroleum asphalt through molecular dynamics[J]. CIESC Journal, 2023, 74(10): 4037-4050. | |
| [52] | Tsuchida E. Revisiting the minimum image locus method for calculating the radial distribution functions[J]. Computational and Theoretical Chemistry, 2023, 1227: 114256. |
| [53] | Hower J C, He Y, Bernards M T, et al. Understanding the nonfouling mechanism of surfaces through molecular simulations of sugar-based self-assembled monolayers[J]. The Journal of Chemical Physics, 2006, 125(21): 214704. |
| [54] | Zeng S, Su Q W, Zhang L Z. Molecular-level evaluation and manipulation of thermal conductivity, moisture diffusivity and hydrophobicity of a GO-PVP/PVDF composite membrane[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119508. |
| [55] | Qi L B, Jiang T J, Liang R N, et al. Enhancing the oil-fouling resistance of polymeric membrane ion-selective electrodes by surface modification of a zwitterionic polymer-based oleophobic self-cleaning coating[J]. Analytical Chemistry, 2021, 93(18): 6932-6937. |
| [56] | Meena S K, Goldmann C, Nassoko D, et al. Nanophase segregation of self-assembled monolayers on gold nanoparticles[J]. ACS Nano, 2017, 11(7): 7371-7381. |
| [57] | Liu Y L, Zhang D, Ren B P, et al. Molecular simulations and understanding of antifouling zwitterionic polymer brushes[J]. Journal of Materials Chemistry. B, 2020, 8(17): 3814-3828. |
| [58] | Betancourt-Ponce M, Morales-Guzmán C, Cruz-Tato P, et al. Probing the effect of amine N-oxide zwitterionic polymer additives in polysulfone forward osmosis membranes[J]. ACS Applied Polymer Materials, 2022, 4(11): 7966-7975. |
| [59] | Jung K H, Kim H J, Kim M H, et al. Ultrafiltration membranes coated by amphiphilic copolymers containing superhydrophilic zwitterionic and hydrophobic POSS moieties showing improved fouling resistance/release properties[J]. Macromolecular Materials and Engineering, 2020, 305(9): 2000348. |
| [60] | Cheng Y, Wang J L, Li M L, et al. Zwitterionic polymer-grafted superhydrophilic and superoleophobic silk fabrics for anti-oil applications[J]. Macromolecular Rapid Communications, 2020, 41(21): 2000162. |
| [61] | Carro P, Andreasen G, Vericat C, et al. New aspects of the surface chemistry of sulfur on Au(111): surface structures formed by gold-sulfur complexes[J]. Applied Surface Science, 2019, 487: 848-856. |
| [62] | Liao M R, Li Y T, Chen Z, et al. Computer simulations of underwater oil adhesion of self-assembled monolayers on Au(111)[J]. Molecular Simulation, 2020, 46(9): 713-720. |
| [63] | Li Y T, Liao M R, Zhou J. Catechol-cation adhesion on silica surfaces: molecular dynamics simulations[J]. Physical Chemistry Chemical Physics, 2017, 19(43): 29222-29231. |
| [64] | 李映图, 李理波, 周健. 分子动力学模拟多巴在自组装膜上的黏附性[J]. 高等学校化学学报, 2017, 38(5): 798-805. |
| Li Y T, Li L B, Zhou J. Molecular dynamics simulations on the adhesion of DOPA to self-assembled monolayers[J]. Chemical Journal of Chinese Universities, 2017, 38(5): 798-805. |
| [1] | 胡国祥, 朱忆魁, 龙华, 刘晓雯, 熊勤钢. 组分配比影响氯化胆碱-乳酸低共熔溶剂碱木质素溶解度的底层机理研究[J]. 化工学报, 2025, 76(9): 4449-4461. |
| [2] | 高正, 汪辉, 屈治国. 数据驱动辅助高通量筛选阴离子柱撑金属有机框架储氢[J]. 化工学报, 2025, 76(8): 4259-4272. |
| [3] | 林嘉豪, 付芳忠, 叶昊辉, 胡金, 姚明灿, 范鹤林, 王旭, 王瑞祥, 徐志峰. NdF3含量对NdF3-LiF熔盐局域结构和输运性质的影响[J]. 化工学报, 2025, 76(8): 3834-3841. |
| [4] | 王小令, 王绍清, 赵云刚, 常方哲, 穆瑞峰. 基于ReaxFF MD模拟的煤加氢热解有机Ca转化机制研究[J]. 化工学报, 2025, 76(8): 4297-4309. |
| [5] | 乔亮, 李尚, 刘新亮, 王明, 张沛, 侯影飞. 三元共聚物稠油降黏剂的合成及分子模拟研究[J]. 化工学报, 2025, 76(7): 3686-3695. |
| [6] | 李姿睿, 齐凯, 王军, 夏国栋. 基于Janus纳米通道的脱盐过程分子动力学模拟研究[J]. 化工学报, 2025, 76(7): 3531-3538. |
| [7] | 胡嘉朗, 姜明源, 金律铭, 张永刚, 胡鹏, 纪红兵. 机器学习辅助MOFs高通量计算筛选及气体分离研究进展[J]. 化工学报, 2025, 76(5): 1973-1996. |
| [8] | 齐昊, 王玉杰, 李申辉, 邹琦, 刘轶群, 赵之平. 双金属Co/Zn-ZIFs中C3H6和C3H8吸附和扩散行为分子模拟研究[J]. 化工学报, 2025, 76(5): 2313-2326. |
| [9] | 陈建兵, 常昊, 高明, 邢兵, 张磊, 刘奇磊. 基于反应模板与分子动力学的胺基相变吸收剂分相预测方法[J]. 化工学报, 2025, 76(5): 2387-2396. |
| [10] | 李紫鹃, 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷, 喻发全. 分子模拟研究三维扭曲催化芳烃-降冰片烯环化聚合物膜的CO2/N2分离机理[J]. 化工学报, 2025, 76(5): 2348-2357. |
| [11] | 朱峰, 赵跃, 马凤翔, 刘伟. 改性UIO-66对SF6/N2混合气体及其分解产物的吸附特性[J]. 化工学报, 2025, 76(4): 1604-1616. |
| [12] | 周印洁, 吉思蓓, 何松阳, 吉旭, 贺革. 机器学习辅助高通量筛选金属有机骨架用于富碳天然气中分离CO2[J]. 化工学报, 2025, 76(3): 1093-1101. |
| [13] | 张思文, 顾海明, 赵善辉. 纳米氧化铁对纤维素化学链气化的分子反应机理[J]. 化工学报, 2025, 76(1): 363-373. |
| [14] | 王新月, 徐小虎, 张海洋, 尹春华. 维生素A醋酸酯/环糊精包合及性质研究[J]. 化工学报, 2024, 75(S1): 321-328. |
| [15] | 吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号