化工学报 ›› 2025, Vol. 76 ›› Issue (8): 4042-4051.DOI: 10.11949/0438-1157.20250229
周运桃1,2(
), 崔丽凤2, 张杰2, 于富红2, 李新刚1, 田野1(
)
收稿日期:2025-03-10
修回日期:2025-04-08
出版日期:2025-08-25
发布日期:2025-09-17
通讯作者:
田野
作者简介:周运桃(1988—),男,博士,zhouyuntao1005@163.com
基金资助:
Yuntao ZHOU1,2(
), Lifeng CUI2, Jie ZHANG2, Fuhong YU2, Xingang LI1, Ye TIAN1(
)
Received:2025-03-10
Revised:2025-04-08
Online:2025-08-25
Published:2025-09-17
Contact:
Ye TIAN
摘要:
CO2加氢制甲醇是缓解全球气候变暖、实现碳资源再利用的有效途径。Cu/CeO2催化剂是CO2加氢制甲醇的一类重要催化剂,但其甲醇选择性仍有待进一步提高。本文通过引入不同含量的Ga2O3制备了xGaCuCeO催化剂,以调控其甲醇选择性。研究结果显示,Ga2O3增强了催化剂表面CO2的吸附强度,提高了催化剂表面氧空位含量,从而提高了xGaCuCeO催化剂的甲醇选择性。在260℃和3.0 MPa条件下,与CuCeO催化剂相比,Ga含量为1.1% (质量分数)的0.07GaCuCeO催化剂的甲醇选择性提高了47%,时空产率提高了26% (22.4 g·kg-1·h-1)。
中图分类号:
周运桃, 崔丽凤, 张杰, 于富红, 李新刚, 田野. Ga2O3调控CuCeO催化CO2加氢制甲醇的研究[J]. 化工学报, 2025, 76(8): 4042-4051.
Yuntao ZHOU, Lifeng CUI, Jie ZHANG, Fuhong YU, Xingang LI, Ye TIAN. Ga2O3 modified CuCeO catalysts for CO2 hydrogenation to methanol[J]. CIESC Journal, 2025, 76(8): 4042-4051.
| 催化剂 | Cu/%(质量)① | Ga/%(质量)① | 颗粒尺寸/nm② | 比表面积/(m2·g-1) | 平均孔体积/(cm3·g-1) | 平均孔径/nm |
|---|---|---|---|---|---|---|
| CuCeO | 14.3 | 0 | 7.9 | 35.0 | 0.4 | 44.0 |
| 0.03GaCuCeO | 14.0 | 0.5 | 10.3 | 33.5 | 0.3 | 34.6 |
| 0.07GaCuCeO | 13.9 | 1.1 | 11.0 | 29.1 | 0.2 | 35.7 |
| 0.14GaCuCeO | 13.4 | 2.3 | 14.0 | 28.1 | 0.3 | 43.6 |
表1 催化剂组成及物理参数
Table 1 The composition and physical parameters of the catalysts
| 催化剂 | Cu/%(质量)① | Ga/%(质量)① | 颗粒尺寸/nm② | 比表面积/(m2·g-1) | 平均孔体积/(cm3·g-1) | 平均孔径/nm |
|---|---|---|---|---|---|---|
| CuCeO | 14.3 | 0 | 7.9 | 35.0 | 0.4 | 44.0 |
| 0.03GaCuCeO | 14.0 | 0.5 | 10.3 | 33.5 | 0.3 | 34.6 |
| 0.07GaCuCeO | 13.9 | 1.1 | 11.0 | 29.1 | 0.2 | 35.7 |
| 0.14GaCuCeO | 13.4 | 2.3 | 14.0 | 28.1 | 0.3 | 43.6 |
图2 还原后的CuCeO和xGaCuCeO (x = 0.03、0.07、0.14) 催化剂N2吸附-脱附等温线
Fig.2 N2 adsorption-desorption isotherms for the reduced CuCeO and xGaCuCeO (x = 0.03,0.07,0.14) catalysts
图3 CuCeO和xGaCuCeO (x = 0.03、0.07、0.14)催化剂TEM图[(a)~(d)];晶格条纹[(e)~(h)];Cu、Ce、Ga、O四种元素面分布图像[(i)~(l)] (每行从左到右依次为CuCeO、0.03GaCuCeO、0.07GaCuCeO、0.14GaCuCeO)
Fig.3 TEM image[(a)—(d)], HRTEM image[(e)—(h)] and element mappings[(i)—(l)] of Cu, Ce, Ga, O for CuCeO and xGaCuCeO (x = 0.03,0.07,0.14) catalysts (each line from left to right are the CuCeO, 0.03GaCuCeO, 0.07GaCuCeO and 0.14GaCuCeO)
| 催化剂 | Tβ/℃ | CO2吸附量/(μmol·g-1) | Ce3+/( Ce3++ Ce4+) | Oads/(Oads+Olat) | I580/I450 |
|---|---|---|---|---|---|
| CuCeO | 378 | 20.1 | 13.7 | 32.5 | 0.64 |
| 0.03GaCuCeO | 391 | 15.9 | 14.4 | 35.1 | 0.68 |
| 0.07GaCuCeO | 408 | 12.5 | 15.6 | 36.8 | 0.72 |
| 0.14GaCuCeO | 410 | 11.3 | 18.2 | 38.6 | 0.79 |
表2 催化剂CO2吸附和表面化学价态参数
Table 2 The parameters of CO2 adsorption and surface chemical valence state for catalysts
| 催化剂 | Tβ/℃ | CO2吸附量/(μmol·g-1) | Ce3+/( Ce3++ Ce4+) | Oads/(Oads+Olat) | I580/I450 |
|---|---|---|---|---|---|
| CuCeO | 378 | 20.1 | 13.7 | 32.5 | 0.64 |
| 0.03GaCuCeO | 391 | 15.9 | 14.4 | 35.1 | 0.68 |
| 0.07GaCuCeO | 408 | 12.5 | 15.6 | 36.8 | 0.72 |
| 0.14GaCuCeO | 410 | 11.3 | 18.2 | 38.6 | 0.79 |
| 催化剂 | 温度/ ℃ | 压力/MPa | CO2 转化率/% | CH3OH 选择性/% | 文献 |
|---|---|---|---|---|---|
| Cu/CeO2 | 250 | 3.0 | 1.6 | 50.0 | [ |
| Pd/CeO2 | 240 | 3.0 | 6.2 | 30.0 | [ |
| Cu0.3Zr0.3Ce | 240 | 3.0 | 4.1 | 55.3 | [ |
| Ga7.5Cu7.5 | 225 | 5.0 | 3.1 | 55.0 | [ |
| 0.03GaCuCeO | 240 | 3.0 | 2.8 | 61.2 | 本工作 |
| 0.07GaCuCeO | 220 | 3.0 | 1.6 | 77.6 | 本工作 |
| 0.14GaCuCeO | 220 | 3.0 | 1.8 | 81.6 | 本工作 |
表3 CeO2基催化剂催化CO2 加氢制甲醇对比
Table 3 Comparison of different CeO2-based catalysts for CO2 hydrogenation to methanol
| 催化剂 | 温度/ ℃ | 压力/MPa | CO2 转化率/% | CH3OH 选择性/% | 文献 |
|---|---|---|---|---|---|
| Cu/CeO2 | 250 | 3.0 | 1.6 | 50.0 | [ |
| Pd/CeO2 | 240 | 3.0 | 6.2 | 30.0 | [ |
| Cu0.3Zr0.3Ce | 240 | 3.0 | 4.1 | 55.3 | [ |
| Ga7.5Cu7.5 | 225 | 5.0 | 3.1 | 55.0 | [ |
| 0.03GaCuCeO | 240 | 3.0 | 2.8 | 61.2 | 本工作 |
| 0.07GaCuCeO | 220 | 3.0 | 1.6 | 77.6 | 本工作 |
| 0.14GaCuCeO | 220 | 3.0 | 1.8 | 81.6 | 本工作 |
| [1] | 阳平坚, 彭栓, 王静, 等. 碳捕集、利用和封存(CCUS)技术发展现状及应用展望[J]. 中国环境科学, 2024, 44(1): 404-416. |
| Yang P J, Peng S, Wang J, et al. Carbon capture, utilization and storage(CCUS) technology development status and application prospects[J]. China Environmental Science, 2024, 44(1): 404-416. | |
| [2] | Nagireddi S, Agarwal J R, Vedapuri D. Carbon dioxide capture, utilization, and sequestration: current status, challenges, and future prospects for global decarbonization[J]. ACS Engineering Au, 2024, 4(1): 22-48. |
| [3] | Hu J T, Cai Y F, Xie J H, et al. Selectivity control in CO2 hydrogenation to one-carbon products[J]. Chem, 2024, 10(4): 1084-1117. |
| [4] | De S, Dokania A, Ramirez A, et al. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization[J]. ACS Catalysis, 2020, 10(23): 14147-14185. |
| [5] | Kaliyaperumal A, Gupta P, Prasad Y S S, et al. Recent progress and perspective of the electrochemical conversion of carbon dioxide to alcohols[J]. ACS Engineering Au, 2023, 3(6): 403-425. |
| [6] | Ganji P, Chowdari R K, Likozar B. Photocatalytic reduction of carbon dioxide to methanol: carbonaceous materials, kinetics, industrial feasibility, and future directions[J]. Energy & Fuels, 2023, 37(11): 7577-7602. |
| [7] | 贾晨喜, 邵敬爱, 白小薇, 等, 二氧化碳加氢制甲醇铜基催化剂性能的研究进展 [J]. 化工进展, 2020, 39(9): 3658-3668. |
| Jia C X, Shao J A, Bai X W, et al. Review on Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3658-3668. | |
| [8] | 时永兴, 林刚, 孙晓航, 等. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
| Shi Y X, Lin G, Sun X H, et al. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. | |
| [9] | Liu X Y, Wang H W, Lu J L. Recent progress in understanding the nature of active sites for methanol synthesis over Cu/ZnO catalysts[J]. Journal of Catalysis, 2024, 436: 115561. |
| [10] | Singh R, Pandey V, Pant K K. Promotional role of oxygen vacancy defects and Cu-Ce interfacial sites on the activity of Cu/CeO2 catalyst for CO2 hydrogenation to methanol[J]. ChemCatChem, 2022, 14(24): e202201053. |
| [11] | Jiang F, Jiang F, Wang S S, et al. Catalytic activity for CO2 hydrogenation is linearly dependent on generated oxygen vacancies over CeO2-supported Pd catalysts[J]. ChemCatChem, 2022, 14(16): e202200422. |
| [12] | Chang K, Zhang H C, Cheng M J, et al. Application of ceria in CO2 conversion catalysis[J]. ACS Catalysis, 2020, 10(1): 613-631. |
| [13] | 周运桃, 王洪星, 李新刚, 等. CeO2载体在CO2加氢制甲醇中的应用和研究进展[J]. 化工进展, 2024, 43(5): 2723-2738. |
| Zhou Y T, Wang H X, Li X G, et al. Application and research progress of CeO2 support in CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. | |
| [14] | Hengne A M, Yuan D J, Date N S, et al. Preparation and activity of copper-gallium nanocomposite catalysts for carbon dioxide hydrogenation to methanol[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21331-21340. |
| [15] | Yang C S, Ma S C, Liu Y M, et al. Homolytic H2 dissociation for enhanced hydrogenation catalysis on oxides[J]. Nature Communications, 2024, 15(1): 540. |
| [16] | Dai H, Zhang A H, Xiong S Q, et al. The catalytic performance of Ga2O3-CeO2 composite oxides over reverse water gas shift reaction[J]. ChemCatChem, 2022, 14(6): e202200049. |
| [17] | Wang J J, Tang C Z, Li G N, et al. High-performance MaZrO x (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(11): 10253-10259. |
| [18] | Sha F, Tang C Z, Tang S, et al. The promoting role of Ga in ZnZrO x solid solution catalyst for CO2 hydrogenation to methanol[J]. Journal of Catalysis, 2021, 404: 383-392. |
| [19] | Feng W H, Yu M M, Wang L J, et al. Insights into bimetallic oxide synergy during carbon dioxide hydrogenation to methanol and dimethyl ether over GaZrO x oxide catalysts[J]. ACS Catalysis, 2021, 11(8): 4704-4711. |
| [20] | 黄静静, 蔡金孟, 马奎, 等. Ga2O3改性Cu/SiO2催化剂降低水蒸气催化重整产物中CO选择性[J]. 物理化学学报, 2019, 35(4): 431-441. |
| Huang J J, Cai J M, Ma K, et al. Ga2O3-modified Cu/SiO2 catalysts with low CO selectivity for catalytic steam reforming[J]. Acta Physico-Chimica Sinica, 2019, 35(4): 431-441. | |
| [21] | Deng B W, Song H, Peng K, et al. Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 298: 120519. |
| [22] | Li H J, Xiao Y H, Xiao J L, et al. Selective hydrogenation of CO2 into dimethyl ether over hydrophobic and gallium-modified copper catalysts[J]. Chinese Journal of Catalysis, 2023, 54: 178-187. |
| [23] | Singh R, Tripathi K, Pant K K. Investigating the role of oxygen vacancies and basic site density in tuning methanol selectivity over Cu/CeO2 catalyst during CO2 hydrogenation[J]. Fuel, 2021, 303: 121289. |
| [24] | 戴文华, 辛忠, Si掺杂对Cu/ZrO 2 催化CO2加氢制甲醇性能的影响[J]. 化工学报, 2022, 73(8): 3586-3596. |
| Dai W H, Xin Z. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol[J]. CIESC Journal, 2022, 73(8): 3586-3596 | |
| [25] | 张家琳, 徐大为, 高越, 等. 泡沫镍负载CeO2改性CuO催化剂的碳烟燃烧性能研究[J]. 化工学报, 2024, 75(1): 312-321. |
| Zhang J L, Xu D W, Gao Y, et al. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams[J]. CIESC Journal, 2024, 75(1): 312-321. | |
| [26] | Gómez D, Vergara T, Ortega M, et al. Interdependence between the extent of Ga promotion, the nature of active sites, and the reaction mechanism over Cu catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2024, 14(20): 15265-15278. |
| [27] | Lam E, Noh G, Chan K W, et al. Enhanced CH3OH selectivity in CO2 hydrogenation using Cu-based catalysts generated via SOMC from GaⅢ single-sites[J]. Chemical Science, 2020, 11(29): 7593-7598. |
| [28] | Zhang Y D, Liang L, Chen Z Y, et al. Highly efficient Cu/CeO2-hollow nanospheres catalyst for the reverse water-gas shift reaction: investigation on the role of oxygen vacancies through in situ UV-Raman and DRIFTS[J]. Applied Surface Science, 2020, 516: 146035. |
| [29] | Zhu J D, Su Y Q, Chai J C, et al. Mechanism and nature of active sites for methanol synthesis from CO/CO2 on Cu/CeO2 [J]. ACS Catalysis, 2020, 10(19): 11532-11544. |
| [30] | Jiang F, Wang S S, Liu B, et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts[J]. ACS Catalysis, 2020, 10(19): 11493-11509. |
| [31] | Zhang J P, Sun X H, Wu C Y, et al. Engineering Cu+/CeZrO x interfaces to promote CO2 hydrogenation to methanol[J]. Journal of Energy Chemistry, 2023, 77: 45-53. |
| [32] | Attada Y, Velisoju V K, Mohamed H O, et al. Dual experimental and computational approach to elucidate the effect of Ga on Cu/CeO2-ZrO2 catalyst for CO2 hydrogenation[J]. Journal of CO2 Utilization, 2022, 65: 102251. |
| [33] | Han X Y, Xiao T T, Li M S, et al. Synergetic interaction between single-atom Cu and Ga2O3 enhances CO2 hydrogenation to methanol over CuGaZrO x [J]. ACS Catalysis, 2023, 13(20): 13679-13690. |
| [1] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [2] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [3] | 裴星亮, 叶翠平, 裴赢丽, 李文英. 碱改性MIL-53(Cr)选择性吸附分离二甲苯异构体[J]. 化工学报, 2025, 76(S1): 258-267. |
| [4] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [5] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [6] | 王小令, 王绍清, 赵云刚, 常方哲, 穆瑞峰. 基于ReaxFF MD模拟的煤加氢热解有机Ca转化机制研究[J]. 化工学报, 2025, 76(8): 4297-4309. |
| [7] | 杨敏, 段新伟, 吴俊宏, 米杰, 王建成, 武蒙蒙. Sm2O3/γ-Al2O3催化剂的COS催化水解性能及失活机制[J]. 化工学报, 2025, 76(8): 4061-4070. |
| [8] | 刘沁雯, 叶恒冰, 张逸伟, 朱法华, 钟文琪. 煤与禽类粪便混合燃料的加压富氧燃烧特性研究[J]. 化工学报, 2025, 76(7): 3487-3497. |
| [9] | 董泽明, 娄聚伟, 王楠, 陈良奇, 王江峰, 赵攀. 含余热回收的超临界压缩二氧化碳储能系统热力学特性研究[J]. 化工学报, 2025, 76(7): 3477-3486. |
| [10] | 范振宁, 梁海宁, 房茂立, 赫一凡, 于帅, 闫兴清, 安佳然, 乔帆帆, 喻健良. CO2管道不同相态节流放空特性研究与对比[J]. 化工学报, 2025, 76(7): 3742-3751. |
| [11] | 丁宏鑫, 干文翔, 赵雍洋, 贾润泽, 康子祺, 赵玉隆, 向勇. X65钢焊接接头在超临界CO2相及富H2O相中的腐蚀机理研究[J]. 化工学报, 2025, 76(7): 3426-3435. |
| [12] | 高凤凤, 程慧峰, 杨博, 郝晓刚. 电驱动NiFeMn LDH/CNTs/PVDF膜电极选择性提取钨酸根离子[J]. 化工学报, 2025, 76(7): 3350-3360. |
| [13] | 卢丽丽, 李晨, 陈柳云, 谢新玲, 罗轩, 苏通明, 秦祖赠, 纪红兵. BiOBr的形貌调控及其光催化CO2还原性能的研究[J]. 化工学报, 2025, 76(6): 2687-2700. |
| [14] | 龚丽芳, 任美慧, 蒋吉春, 郭光召, 胡红云, 黄永达, 姚洪. 垃圾焚烧烟气中芳香烃化合物在线监测和选择性催化还原脱除研究[J]. 化工学报, 2025, 76(6): 3018-3028. |
| [15] | 陈建兵, 常昊, 高明, 邢兵, 张磊, 刘奇磊. 基于反应模板与分子动力学的胺基相变吸收剂分相预测方法[J]. 化工学报, 2025, 76(5): 2387-2396. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号