化工学报 ›› 2025, Vol. 76 ›› Issue (11): 6110-6120.DOI: 10.11949/0438-1157.20250611
• 过程安全 • 上一篇
汪泉1,2(
), 徐建设1, 杨耀勇3, 李瑞1, 胡彬1, 冯鼎玉1, 朱文艳1, 葛雨1
收稿日期:2025-06-06
修回日期:2025-07-02
出版日期:2025-11-25
发布日期:2025-12-19
通讯作者:
汪泉
作者简介:汪泉(1980—),男,博士,教授,wqaust@163.com
基金资助:
Quan WANG1,2(
), Jianshe XU1, Yaoyong YANG3, Rui LI1, Bin HU1, Dingyu FENG1, Wenyan ZHU1, Yu GE1
Received:2025-06-06
Revised:2025-07-02
Online:2025-11-25
Published:2025-12-19
Contact:
Quan WANG
摘要:
火灾一旦发生将造成严重危害,为减少灾害并提升消防灭火能力,通过高速分散法制备了一种由疏水性纳米二氧化硅包覆液体形成具有核壳结构的干水灭火剂,采用超声振荡法混合5-氨基四氮唑和高氯酸钾制备抛撒药,同时基于熔融沉积成型(FDM)3D打印技术,采用聚乳酸材料(PLA)制作100 g微型灭火弹,设计了7种不同灭火弹结构,分别为相同壳体壁厚(0.6 mm)不同装药部位(底部、中心、顶部),以及相同装药部位(中心装药)不同壳体壁厚(0.2、0.4、0.8、1.0 mm),优选出抛撒效果较好的灭火弹结构并进行不同尺寸正庚烷油盘火(200、300、400 mm)灭火实验。结果表明:抛撒药对耐压干水的损坏较小;相较于其他工况,灭火弹采用中心装药、壁厚为0.6 mm时,壳体能够有效破裂,干水抛撒在径向呈现“扁平椭圆柱”状,抛撒速度峰值为57.95 m/s,且产生38.89%拉丝状破片,该破片具有良好弹性,可起到缓冲效果,不会对周围环境造成危害;灭火弹仅用时106 ms扑灭300 mm正庚烷油盘火。本研究可为干水型灭火弹结构优化提供理论依据,同时可为灭火弹扑灭油池火提供参考。
中图分类号:
汪泉, 徐建设, 杨耀勇, 李瑞, 胡彬, 冯鼎玉, 朱文艳, 葛雨. 灭火弹结构对抛撒干水特性影响研究[J]. 化工学报, 2025, 76(11): 6110-6120.
Quan WANG, Jianshe XU, Yaoyong YANG, Rui LI, Bin HU, Dingyu FENG, Wenyan ZHU, Yu GE. Study on influence of structure of fire extinguishing agent on characteristics of scattered dry water[J]. CIESC Journal, 2025, 76(11): 6110-6120.
| 名称 | 供应厂商 | 备注 |
|---|---|---|
| 疏水HB-139纳米SiO2 | 湖北汇富纳米材料股份有限公司 | 纯度≥99.0% |
| 吸水树脂(SAP) | 天津市华盛化学试剂有限公司 | 纯度≥99.0% |
| 5-氨基四氮唑(5-AT,CH3N5) | 山东科源生化有限公司 | 纯度≥98.0% |
| 高氯酸钾(KClO4) | 天津市红岩化学试剂厂 | 纯度≥99.5% |
| 丙酮(CH3COCH3) | 茂名市润景化工有限公司 | 纯度≥99.5% |
| PLA打印耗材 | 深圳拓竹科技有限公司 | Bambu PLA Basic |
| 去离子水 | 实验室自制 | — |
表1 实验材料
Table 1 Experimental materials
| 名称 | 供应厂商 | 备注 |
|---|---|---|
| 疏水HB-139纳米SiO2 | 湖北汇富纳米材料股份有限公司 | 纯度≥99.0% |
| 吸水树脂(SAP) | 天津市华盛化学试剂有限公司 | 纯度≥99.0% |
| 5-氨基四氮唑(5-AT,CH3N5) | 山东科源生化有限公司 | 纯度≥98.0% |
| 高氯酸钾(KClO4) | 天津市红岩化学试剂厂 | 纯度≥99.5% |
| 丙酮(CH3COCH3) | 茂名市润景化工有限公司 | 纯度≥99.5% |
| PLA打印耗材 | 深圳拓竹科技有限公司 | Bambu PLA Basic |
| 去离子水 | 实验室自制 | — |
| 名称 | 供应厂商 | 型号 |
|---|---|---|
| 高速分散机 | 湖南力辰仪器科技有限公司 | FS400-ST型 |
| 超声波清洗机 | 广州科盟清洁技术有限公司 | KM-12C型 |
| 磁力搅拌器 | 常州普天仪器制造有限公司 | 78-1型 |
| 电热鼓风干燥箱 | 上海一恒科学仪器有限公司 | DHG-9070A型 |
| 高速摄像机 | 日本NAC Image Technology公司 | NAC Memrecam HX-3型 |
| 3D打印机 | 深圳拓竹科技有限公司 | Bambu Lab P1S型 |
表2 实验设备
Table 2 Experimental equipment
| 名称 | 供应厂商 | 型号 |
|---|---|---|
| 高速分散机 | 湖南力辰仪器科技有限公司 | FS400-ST型 |
| 超声波清洗机 | 广州科盟清洁技术有限公司 | KM-12C型 |
| 磁力搅拌器 | 常州普天仪器制造有限公司 | 78-1型 |
| 电热鼓风干燥箱 | 上海一恒科学仪器有限公司 | DHG-9070A型 |
| 高速摄像机 | 日本NAC Image Technology公司 | NAC Memrecam HX-3型 |
| 3D打印机 | 深圳拓竹科技有限公司 | Bambu Lab P1S型 |
| [1] | Xu M M, Wei Y X, Qin A, et al. Novel silica hydrogel-based forest fire extinguishing agent: construction, fire extinguishing performance and mechanism study[J]. Journal of Cleaner Production, 2025, 486: 144490. |
| [2] | Jo J H, Black W Z. Stairwell pressurization and the movement of smoke during a high-rise fire: discussion[J]. ASHRAE Transactions, 2015, 121: 230-231. |
| [3] | Lydersen J M, Collins B M, Brooks M L, et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event[J]. Ecological Applications, 2017, 27(7): 2013-2030. |
| [4] | Robane N S A, Vui San M C, Md Said M S, et al. Parametric investigation of acetone liquid pool fire experiments on fire characteristics[J]. Process Safety and Environmental Protection, 2025, 194: 604-618. |
| [5] | 汪泉, 李志敏, 郭子如, 等. 爆炸水雾扑灭油火过程的实验研究[J]. 高压物理学报, 2014, 28(4): 450-454. |
| Wang Q, Li Z M, Guo Z R, et al. Experimental study on the process of oil fire extinguishing by explosive water mist[J]. Journal of High Pressure Physics, 2014, 28(4): 450-454. | |
| [6] | Yoshida Y, Torikai H. Blowoff mechanism of airburst blast extinguishment of a methane air jet diffusion flame with micro explosive[J]. Fire Safety Journal, 2024, 142: 103983. |
| [7] | Perry J. A hybrid water/nitrogen mist extinguishing technology used for fire-fighting bomb development[C]//Max L, Dirk S. 21st International Water Mist Conference. Madrid, Spain: International Water Mist Association, 2022: 20221-20229. |
| [8] | 刘皓, 张天巍, 夏登友, 等. 凝胶型核壳结构粉体抑制A类火的有效性研究[J]. 化工学报, 2019, 70(4): 1652-1660. |
| Liu H, Zhang T W, Xia D Y, et al. Study on the effectiveness of gel-type core-shell structured powders in suppressing class A fires[J]. CIESC Journal, 2019, 70(4): 1652-1660. | |
| [9] | Li X T, Du K, Zhu Y X, et al. Dry water: toward an ideal extinguishant for lithium-ion battery fire[J]. Journal of Energy Storage, 2024, 80: 110204. |
| [10] | Wang Q H, Peng B, Luo Z M, et al. Gas explosion suppression performance of modified gel-type dry waters[J]. Powder Technology, 2023, 420: 118378. |
| [11] | Han Z Y, Zhang Y P, Du Z M, et al. New-type gel dry-water extinguishants and its effectiveness[J]. Journal of Cleaner Production, 2017, 166: 590-600. |
| [12] | Chen X F, Fan A, Yuan B H, et al. Renewable biomass gel reinforced core-shell dry water material as novel fire extinguishing agent[J]. Journal of Loss Prevention in the Process Industries, 2019, 59: 14-22. |
| [13] | Sun B F, Bai C H, Zhao C H, et al. Dispersal characteristics dependence on mass ratio for explosively driven dry powder particle[J]. Materials, 2023, 16(13): 4537. |
| [14] | Zheng L, Quan W. Experimental study of explosive water mist extinguishing fire[J]. Procedia Engineering, 2011, 11: 258-267. |
| [15] | 蒋耀港, 马宏昊, 沈兆武, 等. 冷激波灭火系统中激波对扑灭油盆火焰影响的研究[J]. 高压物理学报, 2013, 27(5): 731-737. |
| Jiang Y G, Ma H H, Shen Z W, et al. Study on the effect of surge wave on extinguishing oil basin flame in cold surge wave fire extinguishing system[J]. Journal of High Pressure Physics, 2013, 27(5): 731-737. | |
| [16] | 蒋耀港, 马宏昊, 沈兆武, 等. 冷激波灭火系统中激波对灭火效果和周边环境的影响[J]. 爆炸与冲击, 2013, 33(1): 67-72. |
| Jiang Y G, Ma H H, Shen Z W, et al. Influence of surge on fire extinguishing effect and surrounding environment in cold surge fire extinguishing system[J]. Explosion and Shock, 2013, 33(1): 67-72. | |
| [17] | 徐豫新, 王树山, 王海燕, 等. 一种灭火战斗部威力优化的工程设计方法[J]. 兵工学报, 2010, 31(4): 473-476. |
| Xu Y X, Wang S S, Wang H Y, et al. An engineering design method for optimizing the power of fire-fighting combat unit[J]. Journal of Military Engineering, 2010, 31(4): 473-476. | |
| [18] | 朱聪, 梁增友, 邓德志, 等. 装药结构对灭火弹灭火剂抛撒影响研究[J]. 弹箭与制导学报, 2020, 40(4): 85-88. |
| Zhu C, Liang Z Y, Deng D Z, et al. Study on the effect of loading structure on the spreading of extinguishing agent of fire extinguishing ammunition[J]. Journal of Archery and Guidance, 2020, 40(4): 85-88. | |
| [19] | Aydin B, Selvi E, Tao J, et al. Use of fire-extinguishing balls for a conceptual system of drone-assisted wildfire fighting[J]. Drones, 2019, 3(1): 17. |
| [20] | Li H Y, Du Z M. Study on the development of aerial fire extinguishing munition for forest fires and fire extinguishing tests[J]. Case Studies in Thermal Engineering, 2024, 55: 104138. |
| [21] | 李成孝. 干水灭火剂制备、性能及其爆炸灭火机理分析[D]. 淮南: 安徽理工大学, 2020. |
| Li C X. Analysis of dry water extinguishing agent preparation, performance and its explosion extinguishing mechanism[D]. Huainan: Anhui University of Technology, 2020. | |
| [22] | Yoo J, Kim J H, Kim D. Fire extinguishing device using nanoenergetic materials and dry water[J]. Powder Technology, 2024, 443: 119935. |
| [23] | 李涛, 王克印, 张增军. 灭火剂抛撒云图与弹体破片形状关系试验研究[J]. 科技通报, 2010, 26(4): 603-605. |
| Li T, Wang K Y, Zhang Z J. Experimental study on the relationship between fire extinguishing agent dispersal cloud and projectile fragmentation shape[J]. Science and Technology Bulletin, 2010, 26(4): 603-605. | |
| [24] | 王紫民, 武建德. 一种森林灭火弹战斗部爆炸的数值模拟[J]. 机械, 2019, 46(12): 32-35. |
| Wang Z M, Wu J D. Numerical simulation of warhead explosion of forest fire extinguishing bomb[J]. Journal of Machinery, 2019, 46(12): 32-35. | |
| [25] | Muthe L P, Pickering K, Gauss C. A review of 3D/4D printing of poly-lactic acid composites with bio-derived reinforcements[J]. Composites Part C: Open Access, 2022, 8: 100271. |
| [26] | Karthikeyan A G, Prabhu L, Khan T, et al. Effect of process variables on Ultimaker 2+ 3D FDM printed tough PLA parts[J]. Materials and Manufacturing Processes, 2025, 40(3): 402-414. |
| [27] | 袁建文, 祁轩, 董成, 等. 5-氨基四唑/高碘酸钠体系气体发生剂特性[J]. 兵工学报, 2022, 43(4): 788-795. |
| Yuan J W, Qi X, Dong C, et al. Characterization of gas generators in 5-aminotetrazole/sodium periodate system[J]. Journal of Military Engineering, 2022, 43(4): 788-795. | |
| [28] | Forny L, Saleh K, Denoyel R, et al. Contact angle assessment of hydrophobic silica nanoparticles related to the mechanisms of dry water formation[J]. Langmuir, 2010, 26(4): 2333-2338. |
| [29] | 张迎新, 杨康, 李日军, 等. 新型矿用灭火材料-凝胶干水粉体的制备及灭火实验研究[J]. 材料导报, 2024, 38(24): 101-110. |
| Zhang Y X, Yang K, Li R J, et al. Preparation and experimental study of new mining fire extinguishing material-gel dry water powder[J]. Materials Guide, 2024, 38(24): 101-110. | |
| [30] | Zeng H, Qiu D Y, Li K Y, et al. A novel gel dry water: preparation and application in methane-air explosion[J]. Process Safety and Environmental Protection, 2024, 186: 134-150. |
| [31] | 中华人民共和国国家质量监督检验疫总局,中国国家标准化管理委员会. 塑料 拉伸性能的测定 第3部分:薄膜和薄片的试验条件: [S].北京:中国标准出版社, 2006. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Plastics: determination of tensile properties (part 3): test conditions for films and sheets: [S]. Beijing: China Standard Press, 2006. | |
| [32] | Zhang Q, Bai C, Liu Q, et al. Study on near field dispersal of fuel air explosive[J]. Journal of Beijing Institute of Technology (English Edition), 1999, 8(2): 113-118. |
| [33] | 汪泉, 李成孝, 李志敏, 等. 干粉灭火剂和水爆炸驱动下运动特性及灭火效果对比分析[J]. 实验力学, 2018, 33(2): 281-289. |
| Wang Q, Li C X, Li Z M, et al. Comparative analysis of kinematic properties and fire extinguishing effect of dry powder fire extinguishing agent and water under explosion drive[J]. Experimental Mechanics, 2018, 33(2): 281-289. | |
| [34] | Iragi M, Pascual-González C, Esnaola A, et al. Ply and interlaminar behaviours of 3D printed continuous carbon fire-reinforced thermoplastic laminates; effects of processing conditions and microstructure[J]. Additive Manufacturing, 2019, 30: 100884. |
| [35] | 高尧, 李玲梦, 孔祥威, 等. 3D打印用聚乳酸复合材料进展[J]. 塑料, 2022, 51(3): 73-76, 87. |
| Gao Y, Li L M, Kong X W, et al. Advances in polylactic acid composites for 3D printing[J]. Plastics, 2022, 51(3): 73-76, 87. | |
| [36] | Marşavina L, Vălean C, Mărghitaş M, et al. Effect of the manufacturing parameters on the tensile and fracture properties of FDM 3D-printed PLA specimens[J]. Engineering Fracture Mechanics, 2022, 274: 108766. |
| [1] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [2] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [3] | 燕子腾, 詹飞龙, 丁国良. 空调用套管式分流器结构设计及分流效果验证[J]. 化工学报, 2025, 76(S1): 152-159. |
| [4] | 何广汇, 王金江, 魏振强, 汪征, 张来斌. CSTR 工控安全虚实融合仿真方法研究[J]. 化工学报, 2025, 76(9): 4524-4538. |
| [5] | 刘奕扬, 邢志祥, 刘烨铖, 彭明, 李玉洋, 李云浩, 沈宁舟. 加氢站液氢泄漏扩散特性与安全监测数值模拟研究[J]. 化工学报, 2025, 76(9): 4694-4708. |
| [6] | 朱春梦, 李增, 柳楠, 赵云鹏, 石孝刚, 蓝兴英. 基于自编码器和多尺度符号转移熵的FCC沉降器跑剂故障检测[J]. 化工学报, 2025, 76(9): 4512-4523. |
| [7] | 赵婧, 董书辰, 李高洋, 黄友科, 石浩森, 缪舒文, 谭辰妍, 朱唐琦, 李永帅, 潘慧, 凌昊. 基于电化学模型的电池性能模拟与优化[J]. 化工学报, 2025, 76(9): 4922-4932. |
| [8] | 王一飞, 李玉星, 欧阳欣, 赵雪峰, 孟岚, 胡其会, 殷布泽, 郭雅琦. 基于裂尖减压特性的CO2管道断裂扩展数值计算[J]. 化工学报, 2025, 76(9): 4683-4693. |
| [9] | 田鹏, 张忠林, 任超, 孟国超, 郝晓刚, 刘叶刚, 侯起旺, ABUDULA Abuliti, 官国清. 基于自热再生的一种低温甲醇洗工艺建模与优化[J]. 化工学报, 2025, 76(9): 4601-4612. |
| [10] | 王杰, 林渠成, 张先明. 基于分解算法的混合气体多级膜分离系统全局优化[J]. 化工学报, 2025, 76(9): 4670-4682. |
| [11] | 曹潇风, 张华海, 王江云, 王利民. 锥形气体层流元件结构设计及流动特性研究[J]. 化工学报, 2025, 76(9): 4440-4448. |
| [12] | 李科, 谢昊琳, 文键. 耦合多重蒸气冷却屏的液氢储罐绝热性能的多目标遗传算法优化[J]. 化工学报, 2025, 76(8): 4217-4227. |
| [13] | 范夏雨, 孙建辰, 李可莹, 姚馨雅, 商辉. 机器学习驱动液态有机储氢技术的系统优化[J]. 化工学报, 2025, 76(8): 3805-3821. |
| [14] | 赵美, 甘雨欣, 赵绍磊, 杨令, 王亭杰. 硅橡胶用纳米二氧化硅表面有机修饰及补强机理研究进展[J]. 化工学报, 2025, 76(7): 3125-3136. |
| [15] | 王涛, 李光明, 胡秋霞, 徐静. 基于时序演变粒子群算法的双色注射产品翘曲工艺优化[J]. 化工学报, 2025, 76(7): 3403-3415. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号