化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6626-6632.DOI: 10.11949/0438-1157.20250667

• 能源和环境工程 • 上一篇    下一篇

基于机器学习与粒子群算法的微结构辐射冷却性能优化研究

刘博(), 黄昊辉, 李奇蕴, 孙晨贸, 冯杰   

  1. 华北电力大学动力工程系,河北 保定 071003
  • 收稿日期:2025-06-20 修回日期:2025-09-14 出版日期:2025-12-31 发布日期:2026-01-23
  • 通讯作者: 刘博
  • 作者简介:刘博(1993—),男,博士,讲师, hdbdpeliubo@ncepu.edu.cn
  • 基金资助:
    河北省自然科学基金项目(E2024502018)

Optimization of radiative cooling performance of microstructure based on machine learning model and particle swarm algorithm

Bo LIU(), Haohui HUANG, Qiyun LI, Chenmao SUN, Jie FENG   

  1. Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China
  • Received:2025-06-20 Revised:2025-09-14 Online:2025-12-31 Published:2026-01-23
  • Contact: Bo LIU

摘要:

为构建具有高发射率的表面微结构,提高其辐射制冷性能,针对一种具有四棱台周期性特征的辐射制冷微结构,开展了其大气窗口发射率的优化研究。首先,基于时域有限差分(FDTD)方法,计算了不同几何参数条件下的光谱特性;然后,基于大量数据,建立了利用神经网络方法的发射率预测机器学习模型;最后,结合自适应粒子群优化算法(APSO)实现了发射性能优化,获得最佳几何参数组合,并分析了不同结构参数对大气窗口平均发射率的影响。结果发现,利用FDTD计算结果和神经网络算法的机器学习模型,可以实现此类结构发射率的高精度预测。不同几何参数对发射性能的影响不同,最佳参数组合下,此类微结构的大气窗口平均发射率接近于1,具有很强的辐射制冷能力。

关键词: 制冷性能, 辐射, 微尺度, 神经网络, 结构优化

Abstract:

To construct surface microstructures with high emissivity and improve their radiative cooling performance, this study investigated the optimization of the atmospheric window emissivity of a radiative cooling microstructure with periodic tetrahedral features. Firstly, based on the finite-difference time-domain (FDTD) method, the spectral characteristics under different geometric parameter conditions are calculated. Then, based on a large amount of data, a machine-learning model for emissivity prediction using the neural network method is established. Finally, by combining with the adaptive particle swarm optimization (APSO) algorithm, the emission performance is optimized, the optimal combination of geometric parameters is obtained, and the influence of different structural parameters on the average emissivity in the atmospheric window is analyzed. The results show that the machine-learning model based on the FDTD calculation results and neural network algorithms can achieve high-precision emissivity prediction for such structures. Different geometric parameters have different impacts on the emissivity. Under the optimal combination of structural parameters, the average emissivity of this type of microstructure in the atmospheric window is close to 1, indicating strong radiative cooling ability.

Key words: cooling performance, radiation, microscale, neural networks, structure optimization

中图分类号: