| [1] |
Lee M, Kim G, Jung Y, et al. Photonic structures in radiative cooling[J]. Light: Science & Applications, 2023, 12: 134.
|
| [2] |
刘冠水. 辐射制冷技术在高铁站房的节能应用研究[J]. 制冷技术, 2024, 44(6): 75-79, 86.
|
|
Liu G S. Study on energy-saving application of radiative cooling technology in high-speed railway station[J]. Chinese Journal of Refrigeration Technology, 2024, 44(6): 75-79, 86.
|
| [3] |
徐第开, 盛茗峰, 杨荣贵, 等.天空辐射制冷规模化应用对我国建筑的减碳作用研究[J]. 制冷学报, 2023, 44(6): 13-21, 28.
|
|
Xu D K, Sheng M F, Yang R G, et al. Large-scale application of radiative sky cooling in buildings for carbon emission reduction[J]. Journal of Refrigeration. 2023, 44(6): 13-21, 28.
|
| [4] |
文凯, 王程远, 王晓坡, 等. 耦合天空辐射制冷的数据中心自然冷却方案分析[J]. 工程热物理学报, 2024, 45(5): 1248-1254.
|
|
Wen K, Wang C Y, Wang X P, et al. Analysis of free cooling scheme coupled with radiative sky cooling in data center[J]. Journal Of Engineering Thermophysics, 2024, 45(5): 1248-1254.
|
| [5] |
曹雄金, 王艳, 王磊, 等. 相变材料与辐射制冷材料耦合技术的研究进展[J]. 化工新型材料, 2025, 53(3): 58-64.
|
|
Cao X J, Wang Y, Wang L, et al. Research progress on coupling technology of phase change materials and radiation cooling material[J]. New Chemical Materials, 2025, 53(3): 58-64.
|
| [6] |
Lin K T, Han J H, Li K, et al. Radiative cooling: fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond[J]. Nano Energy, 2021, 80: 105517.
|
| [7] |
Sheng M F, Pan H D, Xu D K, et al. Characterization and performance enhancement of radiative cooling on circular surfaces[J]. Renewable and Sustainable Energy Reviews, 2023, 188: 113782.
|
| [8] |
Ahmed S, Li Z P, Javed M S, et al. A review on the integration of radiative cooling and solar energy harvesting[J]. Materials Today Energy, 2021, 21: 100776.
|
| [9] |
Yu X X, Chen C. Coupling spectral-dependent radiative cooling with building energy simulation[J]. Building and Environment, 2021, 197: 107841.
|
| [10] |
Zeyghami M, Goswami D Y, Stefanakos E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling[J]. Solar Energy Materials and Solar Cells, 2018, 178: 115-128.
|
| [11] |
Yang X F, Wang S T, Zhang D, et al. Theoretical investigation of two ideal radiative cooling materials and radiative sky water-cooling module with ideal selective radiative materials[J]. Energy and Buildings, 2024, 323: 114768.
|
| [12] |
Li B, Cao B Y, Song R C, et al. Low-cost and scalable sub-ambient radiative cooling porous films[J]. Journal of Photonics for Energy, 2023, 13(1): 015501.
|
| [13] |
Chae D, Son S, Lim H, et al. Scalable and paint-format microparticle-polymer composite enabling high-performance daytime radiative cooling[J]. Materials Today Physics, 2021, 18: 100389.
|
| [14] |
Bijarniya J P, Sarkar J, Maiti P. Review on passive daytime radiative cooling: fundamentals, recent researches, challenges and opportunities[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110263.
|
| [15] |
Ma H C, Yao K Q, Dou S L, et al. Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling[J]. Solar Energy Materials and Solar Cells, 2020, 212: 110584.
|
| [16] |
Chen J, Li X, Chen Y T, et al. Temperature self-adaptive ultra-thin solar absorber based on optimization algorithm[J]. Photonics, 2023, 10(5): 546.
|
| [17] |
刘立君, 李龙飞, 毛前军. 基于遗传算法优化光栅辐射特性[J]. 工程热物理学报, 2016, 37(7): 1538-1543.
|
|
Liu L J, Li L F, Mao Q J. Radiative property optimization of gratings based on genetic algorithm[J]. Journal of Engineering Thermophysics, 2016, 37(7): 1538-1543.
|
| [18] |
Han T, Zhou Z H, Du Y H, et al. Advances in radiative sky cooling based on the promising electrospinning[J]. Renewable and Sustainable Energy Reviews, 2024, 200: 114533.
|
| [19] |
王林茜, 陈娟, 牟春晖. 基于稀疏采样的FDTD/TDPO混合优化算法[J]. 电波科学学报, 2024, 39(5): 846-851.
|
|
Wang L X, Chen J, Mou C H. Hybrid optimization algorithm of FDTD/TDPO based on sparse sampling[J]. Chinese Journal of Radio Science, 2024, 39(5): 846-851.
|
| [20] |
Bass S F, Palmer A M, Schab K R, et al. Conversion matrix method of moments for time-varying electromagnetic analysis[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(8): 6763-6774.
|
| [21] |
邓祥文, 伍力源, 赵锐, 等. 机器学习在光电子能谱中的应用及展望[J]. 物理学报, 2024, 73(21): 64-84.
|
|
Deng X W, Wu L Y, Zhao R, et al. Application and prospect of machine learning in photo electron spectroscopy[J]. Acta Physica Sinica, 2024, 73(21): 64-84.
|
| [22] |
Sun S L, Cao Z H, Zhu H, et al. A survey of optimization methods from a machine learning perspective[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3668-3681.
|
| [23] |
Narvaez G, Giraldo L F, Bressan M, et al. Machine learning for site-adaptation and solar radiation forecasting[J]. Renewable Energy, 2021, 167: 333-342.
|
| [24] |
杜佳欣, 王富强, 张鑫平, 等. 机器学习辅助辐射特性定向调控优化设计研究与应用综述[J]. 东北电力大学学报, 2024, 44(6): 63-73.
|
|
Du J X, Wang F Q, Zhang X P, et al. A review on the research and application of machine learning assisted optimal design for directional regulation of radiation properties[J]. Journal of Northeast Electric Power University, 2024, 44(6): 63-73.
|
| [25] |
Kim S, Shang W J, Moon S, et al. High-performance transparent radiative cooler designed by quantum computing[J]. ACS Energy Letters, 2022, 7(12): 4134-4141.
|
| [26] |
Pan Q H, Zhou S H, Chen S N, et al. Deep learning-based inverse design optimization of efficient multilayer thermal emitters in the near-infrared broad spectrum[J]. Optics Express, 2023, 31(15): 23944.
|
| [27] |
汪丽旭, 韩玉阁. 微结构热辐射器光谱特性的影响因素研究[J]. 科学技术与工程, 2016, 16(11): 180-184.
|
|
Wang L X, Han Y G. Research on affecting factors of spectral characteristics of radiator with microstructure[J]. Science Technology and Engineering, 2016, 16(11): 180-184.
|
| [28] |
廖涂威, 鞠生宏, 赵长颖. 机器学习加速多层双曲材料近场热调控器设计[J]. 工程热物理学报, 2025, 46(5): 1606-1612.
|
|
Liao T W, Ju S H, Zhao C Y. Review of surrogate gradient methods in spiking deep learning[J]. Journal of Engineering Thermophysics, 2025, 46(5): 1606-1612.
|
| [29] |
Edwards C. Neural networks learn to speed up simulations[J]. Communications of the ACM, 2022, 65(5): 27-29.
|
| [30] |
Rizqi Z U, Chou S Y, Yu T H. Green energy mix modeling under supply uncertainty: hybrid system dynamics and adaptive PSO approach[J]. Applied Energy, 2023, 349: 121643.
|
| [31] |
邱千里, 章晋国, 周东劼, 等. 基于多目标粒子群优化算法设计的双波段窄带热辐射器[J]. 红外与毫米波学报, 2025, 44(1): 11-16.
|
|
Qiu Q L, Zhang J G, Zhou D J, et al. Dual-band narrowband thermal emitter designed based on multi objective particle swarm optimization algorithm[J]. Journal of Infrared Millimeter Waves, 2025, 44(1): 11-16.
|