化工学报 ›› 2025, Vol. 76 ›› Issue (12): 6614-6625.DOI: 10.11949/0438-1157.20250503
尹胜强1(
), 钟湘宇1, 龚漫雨1, 李露1, 刘远征2, 周寿斌3, 肖俊兵1,3(
), 刘昌会2(
), 贾传坤1
收稿日期:2025-05-08
修回日期:2025-06-23
出版日期:2025-12-31
发布日期:2026-01-23
通讯作者:
肖俊兵,刘昌会
作者简介:尹胜强(2004—),男,本科生,yin_sq310@163.com
基金资助:
Shengqiang YIN1(
), Xiangyu ZHONG1, Manyu GONG1, Lu LI1, Yuanzheng LIU2, Shoubin ZHOU3, Junbing XIAO1,3(
), Changhui LIU2(
), Chuankun JIA1
Received:2025-05-08
Revised:2025-06-23
Online:2025-12-31
Published:2026-01-23
Contact:
Junbing XIAO, Changhui LIU
摘要:
为改善相变材料的导热性能,以桃胶为碳源、氢氧化钾(KOH)为活化剂,采用一步化学活化法制备了活化桃胶碳。在棕榈酸(PA)-硬脂酸(SA)二元混合物中分别加入KOH活化桃胶碳(CPGK)和未经活化的桃胶碳(CPG),研究了活化处理对提高二元混合物热性能的影响机制。结果表明,添加剂与相变材料之间仅为物理结合。当添加剂质量分数为5%时,CPGK对复合相变材料导热性能的提升更为明显,PA-SA/CPGK热导率为0.3528 W·m-1·K-1,分别较PA-SA/CPG及PA-SA提高0.92%、22.46%,这是由于CPGK的孔隙结构能提供更多热传导路径。相比于PA-SA混合物,PA-SA/CPGK的熔化时间最大缩短了53.64%,凝固时间最大缩短了11.39%。PA-SA/CPGK较PA-SA/CPG具有更好的热稳定性及形状稳定性,相同测试条件下,PA-SA/CPGK的质量损失比PA-SA/CPG减小2.37%,PA-SA/CPGK的完全泄漏时间较PA-SA/CPG延长5.26%。所制备的复合相变材料具有良好的热性能,在太阳能热利用和热能储存等领域具有广阔应用前景。
中图分类号:
尹胜强, 钟湘宇, 龚漫雨, 李露, 刘远征, 周寿斌, 肖俊兵, 刘昌会, 贾传坤. 活化桃胶碳基复合相变材料性能表征及导热增强研究[J]. 化工学报, 2025, 76(12): 6614-6625.
Shengqiang YIN, Xiangyu ZHONG, Manyu GONG, Lu LI, Yuanzheng LIU, Shoubin ZHOU, Junbing XIAO, Changhui LIU, Chuankun JIA. Characterization of properties and thermal conductivity enhancement of activated carbonized peach gum-based composite phase change materials[J]. CIESC Journal, 2025, 76(12): 6614-6625.
| 材料 | 密度/(g⋅cm-3) | 纯度/% | 熔化温度/℃ |
|---|---|---|---|
| 棕榈酸 | 0.85 | 98.00 | 62.50 |
| 硬脂酸 | 0.84 | 98.37 | 71.70 |
| 氢氧化钾 | 2.04 | AR | — |
表1 部分材料的主要物性参数
Table 1 The main physical properties of used materials
| 材料 | 密度/(g⋅cm-3) | 纯度/% | 熔化温度/℃ |
|---|---|---|---|
| 棕榈酸 | 0.85 | 98.00 | 62.50 |
| 硬脂酸 | 0.84 | 98.37 | 71.70 |
| 氢氧化钾 | 2.04 | AR | — |
| CPG质量分数 | 熔化过程 | 凝固过程 | CPGK质量分数 | 熔化过程 | 凝固过程 | ||||
|---|---|---|---|---|---|---|---|---|---|
| ΔTm/℃ | hm/(J·g-1) | ΔTc/℃ | hc/(J·g-1) | ΔTm/℃ | hm/(J·g-1) | ΔTc/℃ | hc/(J·g-1) | ||
| 0 | [56.10,60.68] | 186.4 | [45.13,52.29] | 186.1 | 0 | [56.10,60.68] | 186.4 | [45.13,52.29] | 186.1 |
| 0.01 | [56.60,62.34] | 183.1 | [43.53,51.73] | 181.6 | 0.01 | [55.30,62.63] | 180.8 | [43.07,52.04] | 175.4 |
| 0.02 | [55.68,60.56] | 171.6 | [44.74,52.02] | 169.8 | 0.02 | [55.52,60.88] | 175.4 | [44.17,51.56] | 172.7 |
| 0.03 | [56.31,62.25] | 170.0 | [43.45,52.33] | 168.8 | 0.03 | [54.78,61.76] | 170.3 | [43.24,51.90] | 169.9 |
| 0.04 | [55.65,62.97] | 169.0 | [43.67,53.23] | 168.2 | 0.04 | [55.38,62.21] | 169.4 | [43.31,52.27] | 169.1 |
| 0.05 | [55.83,59.04] | 166.0 | [46.51,53.24] | 164.2 | 0.05 | [55.02,62.76] | 165.5 | [42.67,51.23] | 165.2 |
表2 复合相变材料的相变潜热及相变温度
Table 2 The latent heat of phase change and phase change temperature of composites
| CPG质量分数 | 熔化过程 | 凝固过程 | CPGK质量分数 | 熔化过程 | 凝固过程 | ||||
|---|---|---|---|---|---|---|---|---|---|
| ΔTm/℃ | hm/(J·g-1) | ΔTc/℃ | hc/(J·g-1) | ΔTm/℃ | hm/(J·g-1) | ΔTc/℃ | hc/(J·g-1) | ||
| 0 | [56.10,60.68] | 186.4 | [45.13,52.29] | 186.1 | 0 | [56.10,60.68] | 186.4 | [45.13,52.29] | 186.1 |
| 0.01 | [56.60,62.34] | 183.1 | [43.53,51.73] | 181.6 | 0.01 | [55.30,62.63] | 180.8 | [43.07,52.04] | 175.4 |
| 0.02 | [55.68,60.56] | 171.6 | [44.74,52.02] | 169.8 | 0.02 | [55.52,60.88] | 175.4 | [44.17,51.56] | 172.7 |
| 0.03 | [56.31,62.25] | 170.0 | [43.45,52.33] | 168.8 | 0.03 | [54.78,61.76] | 170.3 | [43.24,51.90] | 169.9 |
| 0.04 | [55.65,62.97] | 169.0 | [43.67,53.23] | 168.2 | 0.04 | [55.38,62.21] | 169.4 | [43.31,52.27] | 169.1 |
| 0.05 | [55.83,59.04] | 166.0 | [46.51,53.24] | 164.2 | 0.05 | [55.02,62.76] | 165.5 | [42.67,51.23] | 165.2 |
图8 复合相变材料的光热转换实验装置示意图和光热转换曲线
Fig.8 Experimental setup of photothermal conversion and photothermal conversion curves of composite phase change materials
| [1] | Yang S, Shao X F, Luo J H, et al. A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat[J]. Energy, 2023, 265: 126359. |
| [2] | Wang K, Li Y, Wang B L, et al. Study on the integrated battery thermal management system based on magnetic fields and nano-enhanced phase change materials coupled with electrothermal films[J]. International Journal of Heat and Mass Transfer, 2025, 240: 126665. |
| [3] | 邹瀚影, 冯妍卉, 邱琳, 等. 十八烷酸热传导机制的尺度效应研究[J]. 化工学报, 2019, 70(S2): 155-160, 377. |
| Zou H Y, Feng Y H, Qiu L, et al. Size effect of heat conduction mechanism on stearic acid[J]. CIESC Journal, 2019, 70(S2): 155-160, 377. | |
| [4] | Xu T, He R H, Fan G, et al. Hexadecanol-palmitic acid/expanded graphite eutectic composite phase change material and its application in photovoltaic panel[J]. Solar Energy Materials and Solar Cells, 2024, 273: 112934. |
| [5] | 朱郑洋, 李小姗, 罗聪, 等. 基于二元双峰相变储热材料的电池热管理系统及其热适应性研究[J/OL]. 洁净煤技术, 2025. . |
| Zhu Z Y, Li X S, Luo C, et al. Investigations on thermal adaptability of battery thermal management system based on binary double-peak phase change materials[J/OL]. Clean Coal Technology, 2025.. | |
| [6] | Zhang H Q, Sun Q R, Yuan Y P, et al. A novel form-stable phase change composite with excellent thermal and electrical conductivities[J]. Chemical Engineering Journal, 2018, 336: 342-351. |
| [7] | Niu J Y, Yuan W H, Zhang Z G, et al. A pourable, thermally conductive and electronic insulated phase change material for thermal management of lithium-ion battery[J]. Chemical Engineering Journal, 2024, 489: 151310. |
| [8] | Ali Bhutto Y, Pandey A K, Saidur R, et al. Hybrid silver-graphene nanoparticles enhanced Lauric acid phase change material for photovoltaic and thermoelectric generator applications: experimental and simulation analysis[J]. Journal of Energy Storage, 2024, 93: 112320. |
| [9] | Bian Z, Hou F, Bai Y, et al. Composited phase change material with hierarchical metal foam for efficient thermal energy management[J]. Applied Thermal Engineering, 2024, 236: 121745. |
| [10] | Bin Shahid U, Abdala A. A critical review of phase change material composite performance through figure-of-merit analysis: graphene vs boron nitride[J]. Energy Storage Materials, 2021, 34: 365-387. |
| [11] | Xiao J B, Zou B, Liu C H, et al. Carbonized loofah sponge fragments enhanced phase change thermal energy storage: preparation and thermophysical property analysis[J]. Applied Thermal Engineering, 2024, 242: 122505. |
| [12] | Zhang Y, Yan J J, Xie H W, et al. Preparation and performance study of porous biochar-based shape-stabilized phase change materials for thermal energy storage[J]. Biomass Conversion and Biorefinery, 2025, 15(7): 11065-11081. |
| [13] | Atinafu D G, Yun B Y, Yang S, et al. Encapsulation of dodecane in gasification biochar for its prolonged thermal/shape stability, reliability, and ambient enthalpy storage[J]. Chemical Engineering Journal, 2022, 437: 135407. |
| [14] | Li C C, Xie B S, He Z X, et al. 3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage[J]. Renewable Energy, 2019, 140: 862-873. |
| [15] | Gao N, Du J L, Yang W B, et al. Biomass-based shape-stabilized composite phase-change materials with high solar-thermal conversion efficiency for thermal energy storage[J]. Polymers, 2023, 15(18): 3747. |
| [16] | Liu X X, Zhang Y H, Yu C Y, et al. N-doped porous carbon with directional oriented channel structure derived from biomass peach gum/poly(o-phenylenediamine) composite for high-performance supercapacitors[J]. Journal of Energy Storage, 2024, 84: 110860. |
| [17] | Lin Y, Chen Z Y, Yu C Y, et al. Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3389-3403. |
| [18] | Zhao D, Zhao Q, Feng L, et al. Honey-comb carbon nanostructure derived from peach gum to yield high microwave absorption[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(21): 25829-25839. |
| [19] | Dai J S, Ma F, Fu Z, et al. Applicability assessment of stearic acid/palmitic acid binary eutectic phase change material in cooling pavement[J]. Renewable Energy, 2021, 175: 748-759. |
| [20] | Kumar P, Thomas S, Sobhan C B, et al. Activated carbon foam composite derived from PEG400/Terminalia Catappa as form stable PCM for sub-zero cold energy storage[J]. Journal of Cleaner Production, 2024, 434: 139993. |
| [21] | Dai Z F, Zhang G L, Xiao Y F, et al. High-directional thermally conductive stearic acid/expanded graphite-graphene films for efficient photothermal energy storage[J]. Chemical Engineering Journal, 2024, 484: 149203. |
| [22] | 肖俊兵, 钟湘宇, 任建地, 等. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| Xiao J B, Zhong X Y, Ren J D, et al. Research on the heat storage properties of stearic acid phase change materials enhanced by bio-carbon materials[J]. CIESC Journal, 2025, 76(3): 1312-1322. | |
| [23] | Yadav A, Pandey A K, Samykano M, et al. Wheat husk derived microparticle infused organic phase change material for efficient heat transfer and sustainable thermal energy storage[J]. Journal of Energy Storage, 2024, 86: 111204. |
| [24] | Wang C M, Chen K, Huang J, et al. Thermal behavior of polyethylene glycol based phase change materials for thermal energy storage with multiwall carbon nanotubes additives[J]. Energy, 2019, 180: 873-880. |
| [25] | Liu S X, Zhang X, Zhu X Z, et al. A low-temperature phase change material based on capric-stearic acid/expanded graphite for thermal energy storage[J]. ACS Omega, 2021, 6(28): 17988-17998. |
| [26] | Li W, Dong Y, Zhang X, et al. Preparation and performance analysis of graphite additive/paraffin composite phase change materials[J]. Processes, 2019, 7(7): 447. |
| [27] | Agrawal R, Singh K D P, Sharma R K. Experimental investigations on the phase change and thermal properties of nano enhanced binary eutectic phase change material of palmitic acid‐stearic acid/CuO nanoparticles for thermal energy storage[J]. International Journal of Energy Research, 2022, 46(5): 6562-6576. |
| [28] | Bing N C, Wu G Z, Yang J, et al. Thermally induced flexible phase change composites with enhanced thermal conductivity for solar thermal conversion and storage[J]. Solar Energy Materials and Solar Cells, 2022, 240: 111684. |
| [29] | Bai K H, Li C C, Xie B S, et al. Emerging PEG/VO2 dual phase change materials for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 239: 111686. |
| [30] | Wu X H, Wang C X, Wang Y L, et al. Experimental study of thermo-physical properties and application of paraffin-carbon nanotubes composite phase change materials[J]. International Journal of Heat and Mass Transfer, 2019, 140: 671-677. |
| [31] | 陈莎, 陈岳浩, 孙小琴, 等. 碳基纳米石蜡复合相变储能材料制备与性能研究[J]. 储能科学与技术, 2024, 13(12): 4349-4356. |
| Chen S, Chen Y H, Sun X Q, et al. Preparation and properties of nano-carbon-based composite paraffin phase-change materials[J]. Energy Storage Science and Technology, 2024, 13(12): 4349-4356. | |
| [32] | Lu Y, Hu R P, Chen X P, et al. A strategy for constructing 3D ordered boron nitride aerogels-based thermally conductive phase change composites for battery thermal management[J]. Journal of Materials Science & Technology, 2023, 160: 248-257. |
| [33] | Wang C M, Chen K, Huang Z, et al. Effect of polymer-derived silicon carbonitride on thermal performances of polyethylene glycol based composite phase change materials[J]. Solar Energy, 2020, 208: 282-288. |
| [34] | Xiong T, Ok Y S, Dissanayake P D, et al. Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles[J]. Science of the Total Environment, 2022, 827: 154341. |
| [35] | Ji W, Cheng X M, Chen S H, et al. Self-assembly fabrication of GO/TiO2@paraffin microcapsules for enhancement of thermal energy storage[J]. Powder Technology, 2021, 385: 546-556. |
| [36] | Ali Bhutto Y, Pandey A K, Saidur R, et al. Analyzing the thermal potential of binary 2D(h-BN/Gr)nanoparticles enhanced lauric acid phase change material for photovoltaic thermal system application[J]. Journal of Energy Storage, 2023, 73: 109116. |
| [37] | Zhang Y A, Wang J S, Qiu J J, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity[J]. Applied Energy, 2019, 237: 83-90. |
| [38] | Xiao S K, Hu X W, Jiang L, et al. Nano-Ag modified bio-based loofah foam/polyethylene glycol composite phase change materials with higher photo-thermal conversion efficiency and thermal conductivity[J]. Journal of Energy Storage, 2022, 54: 105238. |
| [1] | 廖兵, 祝鑫宇, 黄倩倩, 胥雯, 寇梦瑶, 郭娜. 盐酸羟胺强化芬顿体系在近中性条件下去除2,4-DCP的性能及机理研究[J]. 化工学报, 2025, 76(8): 4273-4283. |
| [2] | 吴雷, 胡紫璇, 高渊, 刘长波, 曹虎生, 刘田田, 朱瑞玉, 周军. 微波联合生物炭活化过硫酸盐氧化修复多环芳烃污染土壤研究[J]. 化工学报, 2025, 76(7): 3659-3670. |
| [3] | 刘纹佳, 杜如雪, 王思齐, 李廷贤. 电-热转换功能型相变储热材料的研究进展及应用[J]. 化工学报, 2025, 76(7): 3185-3196. |
| [4] | 何军, 李勇, 赵楠, 何孝军. 碳负载硒掺杂硫化钴在锂硫电池中的性能研究[J]. 化工学报, 2025, 76(6): 2995-3008. |
| [5] | 赵清萍, 张敏, 赵辉, 王刚, 邱永福. 乙烯氢甲酯化合成丙酸甲酯的氢键作用机制及反应动力学研究[J]. 化工学报, 2025, 76(6): 2701-2713. |
| [6] | 范佳媛, 曾文慧, 任志超, 张文涛, 吕霜. 多熔点相变乳液的制备及性能强化研究[J]. 化工学报, 2025, 76(4): 1863-1874. |
| [7] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| [8] | 肖俊兵, 邹博, 任建地, 刘昌会, 贾传坤. 基于相图分析的氯化物复合熔盐储热性能研究[J]. 化工学报, 2025, 76(3): 963-974. |
| [9] | 陈仲卿, 刘家旭, 王艳语, 井红权, 侯翠红, 屈凌波. K-B-Al体系对磷矿熔融特性及玻璃结构的影响[J]. 化工学报, 2025, 76(3): 1323-1333. |
| [10] | 高越, 李丁, 高玉苗. 有机污染场地土壤催化氧化修复技术研究[J]. 化工学报, 2025, 76(3): 1297-1304. |
| [11] | 杨田, 郭惠霞, 孙梦慈. CoFe2O4/CeO2复合材料活化PMS降解盐酸四环素[J]. 化工学报, 2025, 76(12): 6680-6695. |
| [12] | 王煜晨, 王万宗, 张鑫, 郭茂强, 周晓明, 盛利志. 高负载梓树豆荚壳衍生多孔碳材料的电化学性能研究[J]. 化工学报, 2025, 76(12): 6748-6760. |
| [13] | 陈欣妍, 陈依玲, 彭馨博, 胡靖杰, 江学良, 游峰. 隔热材料的制备、结构及应用研究进展[J]. 化工学报, 2025, 76(12): 6179-6195. |
| [14] | 彭郅众, 郎学磊, 房强, 井慧芳, 钟达忠, 李晋平, 赵强. Ag-Sn间电子结构调控在酸性环境中实现1 A/cm2下高效CO2还原[J]. 化工学报, 2025, 76(12): 6376-6386. |
| [15] | 邱家齐, 杨仲卿, 张志刚, 甘海龙, 霍春秀, 窦志帅, 冉景煜. Mn/Ce共掺杂强化氧物种转化与稀薄甲烷催化燃烧机制研究[J]. 化工学报, 2025, 76(11): 5604-5616. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号