[1] |
van der Hoeven M. CO2 Emissions from Fuel Combustion-Highlights [M]. IEA Statistics, 2011.
|
[2] |
Wang Q, Luo J, Zhong Z, et al. CO2 capture by solid adsorbents and their applications: current status and new trends [J]. Energy & Environmental Science, 2011, 4(1): 42-55.
|
[3] |
Yu K M K, Curcic I, Gabriel J, et al. Recent advances in CO2 capture and utilization [J]. ChemSusChem, 2008, 1(11): 893-899.
|
[4] |
Qin D, Plattner G K, Tignor M, et al. Climate Change 2013: The Physical Science Basis[M]. Cambridge, UK, and New York: Cambridge University Press, 2014.
|
[5] |
Godishala K K, Sangwai J S, Sami N A, et al. Phase stability of semiclathrate hydrates of carbon dioxide in synthetic sea water [J]. Journal of Chemical & Engineering Data, 2013, 58(4): 1062-1067.
|
[6] |
Seifritz W. CO2 disposal by means of silicates [J]. Nature, 1990, 345: 486.
|
[7] |
Jaeger P T, Alotaibi M B, Nasr-El-Din H A. Influence of compressed carbon dioxide on the capillarity of the gas-crude oil- reservoir water system [J]. Journal of Chemical & Engineering Data, 2010, 55(11): 5246-5251.
|
[8] |
Chen H, Kovvali A S, Sirkar K K. Selective CO2 separation from CO2-N2 mixtures by immobilized glycine-Na-glycerol membranes [J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2447-2458.
|
[9] |
Chaikittisilp W, Khunsupat R, Chen T T, et al. Poly(allylamine)- mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air [J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 14203-14210.
|
[10] |
Tai C Y, Chen W R, Shih S M. Factors affecting wollastonite carbonation under CO2 supercritical conditions [J]. AIChE Journal, 2006, 52(1): 292-299.
|
[11] |
Tai C Y, Chien W C, Chen C Y. Crystal growth kinetics of calcite in a dense fluidized-bed crystallizer [J]. AIChE Journal, 1999, 45(8): 1605-1614.
|
[12] |
Lin C Y. Dissolution of silicate minerals[D]. Taiwan: National Taiwan University, 2001.
|
[13] |
O'Connor W K, Dahlin D C, Nilsen D N, et al. Continuing studies on direct aqueous mineral carbonation for CO2 sequestration [R]. Albany Research Center, OR(US), 2002.
|
[14] |
Park A H A, Fan L S. CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process [J]. Chemical Engineering Science, 2004, 59(22): 5241-5247.
|
[15] |
Dirken P, Barrs E, Graveland A, et al. On the crystallization of calcite (CaCO3) during the softening process of drinking water in a pellet reactor with fluidized beds of quartz, garnet and calcite seeds [J]. Industrial Crystallization, 1990, 90: 95.
|
[16] |
Wang X, Maroto-Valer M M. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation [J]. Fuel, 2011, 90(3): 1229-1237.
|
[17] |
Sanna A, Dri M, Maroto-Valer M. Carbon dioxide capture and storage by pH swing aqueous mineralisation using a mixture of ammonium salts and antigorite source [J]. Fuel, 2013, 114: 153-161.
|
[18] |
Coninck H C, Loos M A, Metz B, et al. IPCC special report on carbon dioxide capture and storage [J]. Intergovernmental Panel on Climate Change, 2005.
|
[19] |
Zoback M D, Gorelick S M. Earthquake triggering and large-scale geologic storage of carbon dioxide [J]. Proceedings of the National Academy of Sciences, 2012, 109(26): 10164-10168.
|
[20] |
Xu Y, Ishizaka J, Aoki S. Simulations of the distribution of sequestered CO2 in the North Pacific using a regional general circulation model [J]. Energy Conversion and Management, 1999, 40(7): 683-691.
|
[21] |
Holloway S, Pearce J M, Hards V L, et al. Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide [J]. Energy, 2007, 32(7): 1194-1201.
|
[22] |
Hassanzadeh H, Pooladi-Darvish M, Keith D W. Accelerating CO2 dissolution in saline aquifers for geological storage-mechanistic and sensitivity studies [J]. Energy & Fuels, 2009, 23(6): 3328-3336.
|
[23] |
Lackner K S, Butt D P, Wendt C H. Progress on binding CO2 in mineral substrates [J]. Energy Conversion and Management, 1997, 38: S259-S264.
|
[24] |
Stolaroff J K, Lowry G V, Keith D W. Using CaO-and MgO-rich industrial waste streams for carbon sequestration [J]. Energy Conversion and Management, 2005, 46(5): 687-699.
|
[25] |
Huijgen W J J, Comans R N J. Carbon Dioxide Sequestration by Mineral Carbonation[M]. Wageningen, Netherlands: Wageningen Universiteit, 2007.
|
[26] |
Sipilä J, Teir S, Zevenhoven R. Carbon dioxide sequestration by mineral carbonation literature review update 2005-2007 [J]. Report VT, 2008, 1: 2008.
|
[27] |
Kainiemi L, Eloneva S, Toikka A, et al. Opportunities and obstacles for CO2 mineralization: CO2 mineralization specific frames in the interviews of Finnish carbon capture and storage (CCS) experts [J]. Journal of Cleaner Production, 2015, 94:352-358.
|
[28] |
Ye L, Yue H, Wang Y, et al. CO2 Mineralization of activated K-feldspar + CaCl2 slag to fix carbon and produce soluble potash salt [J]. Industrial & Engineering Chemistry Research, 2014, 53(26): 10557-10565.
|
[29] |
Wang C, Yue H, Li C, et al. Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium [J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 7971-7978.
|
[30] |
Xie H P, Wang Y F, Ju Y, et al. Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar [J]. Chinese Science Bulletin, 2013, 58(1): 128-132.
|
[31] |
Chen Jian(陈健), Luo Weiliang(罗伟亮), Li Han(李晗). A review for research on thermodynamics and kinetics of carbon dioxide absorption with organic amines [J]. CIESC Journal(化工学报), 2014, 65(1): 12-21.
|
[32] |
Haynes W M. CRC Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press, 2014.
|
[33] |
Welch M J, Lifton J F, Seck J A. Tracer studies with radioactive oxygen-15. Exchange between carbon dioxide and water [J]. The Journal of Physical Chemistry, 1969, 73(10): 3351-3356.
|
[34] |
Zhou Z, Liang F, Qin W, et al. Coupled reaction and solvent extraction process to form Li2CO3: mechanism and product characterization [J]. AIChE Journal, 2014, 60(1): 282-288.
|