化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4391-4400.doi: 10.11949/0438-1157.20201683

• 能源和环境工程 • 上一篇    下一篇

苯酚型低共熔溶剂中硫酸钛作为催化剂高效氧化脱硫

赵岩(),李秀萍,赵荣祥()   

  1. 辽宁石油化工大学石油化工学院,辽宁 抚顺 113001
  • 收稿日期:2020-11-25 修回日期:2021-03-11 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 赵荣祥 E-mail:413290370@qq.com;zylhzrx@126.com
  • 作者简介:赵岩(1989—),男,硕士研究生,413290370@qq.com
  • 基金资助:
    辽宁省自然科学基金指导计划项目(2019-ZD-0064)

Highly efficient oxidative desulfurization with titanium sulfate as catalyst in phenol based deep eutectic solvent

Yan ZHAO(),Xiuping LI,Rongxiang ZHAO()   

  1. School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China
  • Received:2020-11-25 Revised:2021-03-11 Published:2021-08-05 Online:2021-08-05
  • Contact: Rongxiang ZHAO E-mail:413290370@qq.com;zylhzrx@126.com

摘要:

低共熔溶剂广泛应用于氧化脱硫过程,开发新型的低共熔溶剂并进一步提升脱硫效果具有重要的意义。 以氯化胆碱为氢键受体,苯酚为氢键供体合成了ChCl/2Ph型低共熔溶剂。通过FT-IR和1H NMR证实了苯酚和氯化胆碱之间存在氢键作用。以苯酚型低共熔溶剂为萃取剂,双氧水为氧化剂,硫酸钛为催化剂氧化脱除模拟油中的二苯并噻吩。考察了反应温度、V(ChCl/2Ph)/V(Oil)、n(H2O2)/n(S)、催化剂用量以及硫化物类型对脱硫率影响。实验表明最佳反应条件如下:模拟油量为5 ml,V(ChCl/2Ph)/V(Oil)=2∶10, n(H2O2)/n(S)=6,催化剂用量为0.01 g,反应温度为40℃,反应时间180 min。在此条件下脱硫率可以达到98.2%。求得体系的表观活化能为41.9 kJ/mol。含有催化剂的低共熔溶剂相可以重复使用5次且活性没有明显降低。机理研究表明形成钛的过氧化物和Br?nsted酸性是具有较高脱硫活性的关键。

关键词: 低共熔溶剂, 催化剂, 溶剂萃取, 氧化脱硫, 活化能, 回收

Abstract:

Deep eutectic solvents (DESs) are widely used in oxidative desulfurization. It is great significance to develop novel DESs and further improve the desulfurization performance. ChCl/2Ph type DESs was synthesized using choline chloride (ChCl) as hydrogen bond acceptor and phenol (Ph) as hydrogen bond donor. The hydrogen bonding interaction between Ph and ChCl was confirmed by FT-IR and 1H NMR. Dibenzothiophene (DBT) was removed from the model oil using ChCl/2Ph as extractant, hydrogen peroxide as oxidant and Ti(SO4)2 as catalyst. The effects of reaction temperature, V(ChCl/2Ph)/V(Oil), n(H2O2)/n(S), the amount of catalyst and different sulfur compounds on the desulfurization rate were investigated. The results show that the optimum reaction conditions are as follows: 5 ml model oil, V(ChCl/2Ph)/V(Oil) =2∶10, n(H2O2)/n(S) = 6, and catalyst dosage of 0.01 g, reaction temperature of 40℃, reaction time of 180 min. Under above conditions, the desulfurization rate can reach to 98.2%. The apparent activation energy of the system is 41.9 kJ/mol. The deep eutectic solvent phase containing catalyst can be reused for 5 times without significant decrease in activity. The study of desulfurization mechanism shows that the formation of Ti peroxides and Br?nsted acid is the key to the high desulfurization activity of the system.

Key words: deep eutectic solvent, catalyst, solvent extraction, oxidative desulfurization, activation, recovery

中图分类号: 

  • TE 624
29 Li L T, Zhang J S, Shen C, et al. Oxidative desulfurization of model fuels with pure nano-TiO2 as catalyst directly without UV irradiation[J]. Fuel, 2016, 167: 9-16.
30 Zuo M G, Huang X Q, Li J X, et al. Oxidative desulfurization in diesel via a titanium dioxide triggered thermocatalytic mechanism[J]. Catalysis Science & Technology, 2019, 9(11): 2923-2930.
31 Park H K, Moon Y T, Kim D K, et al. Formation of monodisperse spherical TiO2 powders by thermal hydrolysis of Ti(SO4)2[J]. Journal of the American Ceramic Society, 1996, 79(10): 2727-2732.
32 Delgado-Mellado N, Larriba M, Navarro P, et al. Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis[J]. Journal of Molecular Liquids, 2018, 260: 37-43.
33 Su J, Lin H F, Wang Q P, et al. Adsorption of phenol from aqueous solutions by organomontmorillonite[J]. Desalination, 2011, 269(1/2/3): 163-169.
34 赵桐桐, 张冬昊, 郭振福, 等. 低共熔溶剂液相微萃取技术测定5种杀菌剂农药残留分析方法[J]. 现代食品科技, 2019, 35(8): 281-286.
Zhao T T, Zhang D H, Guo Z F, et al. A liquid-phase microextraction method based on deep eutectic solvents determination for five kinds of fungicides residues[J]. Modern Food Science and Technology, 2019, 35(8): 281-286.
35 Jiang W, Zhu K, Li H P, et al. Synergistic effect of dual Brønsted acidic deep eutectic solvents for oxidative desulfurization of diesel fuel[J]. Chemical Engineering Journal, 2020, 394: 124831-124838.
36 Li H M, Zhu W S, Wang Y, et al. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride[J]. Green Chemistry, 2009, 11(6): 810-815.
37 Wang Y Y, Jiang D, Wang R, et al. Application of Et3NHCl-AlCl3 ionic liquid as an initiator in cationic copolymerization of 1, 3-pentadiene with styrene[J]. Reaction Kinetics and Catalysis Letters, 2007, 90(1): 69-76.
38 Zhao D S, Wang J L, Zhou E P. Oxidative desulfurization of diesel fuel using a Brønsted acid room temperature ionic liquid in the presence of H2O2[J]. Green Chemistry, 2007, 9(11): 1219-1222.
39 Ghahramaninezhad M, Pakdel F, Niknam S M. Boosting oxidative desulfurization of model fuel by POM-grafting ZIF-8 as a novel and efficient catalyst[J]. Polyhedron, 2019, 170: 364-372.
40 Hao L W, Wang M R, Shan W J, et al. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel[J]. Journal of Hazardous Materials, 2017, 339: 216-222.
1 Ghahramaninezhad M, Ahmadpour A. A new simple protocol for the synthesis of nanohybrid catalyst for oxidative desulfurization of dibenzothiophene[J]. Environmental Science and Pollution Research, 2020, 27(4): 4104-4114.
2 Farzin N N, Miran B A A. Efficient desulfurization of gasoline fuel using ionic liquid extraction as a complementary process to adsorptive desulfurization[J]. Petroleum Science, 2015, 12(2): 330-339.
41 Caero L C, Hernández E, Pedraza F, et al. Oxidative desulfurization of synthetic diesel using supported catalysts(Part I): Study of the operation conditions with a vanadium oxide based catalyst[J]. Catalysis Today, 2005, 107/108: 564-569.
42 Saha B, Kumar S, Sengupta S. Green synthesis of nano silver on TiO2 catalyst for application in oxidation of thiophene[J]. Chemical Engineering Science, 2019, 199: 332-341.
43 Rivoira L P, Ledesma B C, Juárez J M, et al. Novel and simple one-pot method for the synthesis of TiO2 modified-CMK-3 applied in oxidative desulfurization of refractory organosulfur compounds[J]. Fuel, 2018, 226: 498-507.
44 Cui S H, Ma F, Wang Y Q. Oxidative desulfurization of model diesel oil over Ti-containing molecular sieves using hydrogen peroxide[J]. Reaction Kinetics and Catalysis Letters, 2007, 92(1): 155-163.
45 Huang D, Wang Y J, Cui Y C, et al. Direct synthesis of mesoporous TiO2 and its catalytic performance in DBT oxidative desulfurization[J]. Microporous and Mesoporous Materials, 2008, 116(1/2/3): 378-385.
46 Wang C, Zhu W S, Chen Z G, et al. Light irradiation induced aerobic oxidative deep-desulfurization of fuel in ionic liquid[J]. RSC Advances, 2015, 5(121): 99927-99934.
47 Tang X D, Hu T, Li J J, et al. Deep desulfurization of condensate gasoline by electrochemical oxidation and solvent extraction[J].RSC Advances, 2015, 5(66): 53455-53461.
48 Zhang Y J, Gu Y F, Dong X B, et al. Deep oxidative desulfurization of refractory sulfur compounds with cesium salts of mono-substituted phosphomolybdate as efficient catalyst[J]. Catalysis Letters, 2017, 147(7): 1811-1819.
49 Wang C, Chen Z G, Yao X Y, et al. One-pot extraction and aerobic oxidative desulfurization with highly dispersed V2O5/SBA-15 catalyst in ionic liquids[J]. RSC Advances, 2017, 7(62): 39383-39390.
50 Schwarzenbach G, Muehlebach J, Mueller K. Peroxo complexes of titanium[J]. Inorganic Chemistry, 1970, 9(11): 2381-2390.
51 Gao H S, Guo C, Xing J M, et al. Extraction and oxidative desulfurization of diesel fuel catalyzed by a Brønsted acidic ionic liquid at room temperature[J]. Green Chemistry, 2010, 12(7): 1220-1224.
52 Taha M F, Atikah N, Chong F K, et al. Oxidative desulfurization of dibenzothiophene from model oil using ionic liquids as extracting agent[C]//International Conference on Fundamental and Applied Sciences 2012(ICFAS2012). Kuala Lumpur, Malaysia: AIP, 2012, 1482(1): 258-262.
53 王天鹤, 刘泽, 葛茂发, 等. 3-甲基-3-丁烯基-1-醇与硫酸/过氧化氢混合溶液的吸收反应研究[J]. 环境科学, 2011, 32(12): 3599-3605.
Wang T H, Liu Z, Ge M F, et al. Uptake of 3-methyl-3-buten-1-ol into aqueous mixed solution of sulfuric acid and hydrogen peroxide[J]. Environmental Science, 2011, 32(12): 3599-3605.
3 Li H M, Zhu W S, Lu J D, et al. Deep oxidative desulfurization of fuels catalyzed by pristine simple tungstic acid[J]. Reaction Kinetics and Catalysis Letters, 2009, 96(1): 165-173.
4 李志鹏. 炼油化工企业催化汽油加氢工艺技术探讨[J]. 石化技术, 2018, 25(2): 250.
Li Z P. Discussion on catalytic gasoline hydrogenation technology in oil refining and chemical enterprises[J]. Petrochemical Industry Technology, 2018, 25(2): 250.
5 Anbia M, Karami S. Desulfurization of gasoline using novel mesoporous carbon adsorbents[J]. Journal of Nanostructure in Chemistry, 2015, 5(1): 131-137.
6 Bakar W A W A, Ali R, Kadir A A A, et al. Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel[J]. Fuel Processing Technology, 2012, 101: 78-84.
7 Gao Y, Liu Z, Hu G F, et al. Design and synthesis heteropolyacid modified mesoporous hybrid material CNTs@MOF-199 catalyst by different methods for extraction-oxidation desulfurization of model diesel[J]. Microporous and Mesoporous Materials, 2020, 291: 109702-109723.
8 Kiran N, Abro R, Abro M, et al. Extractive desulfurization of gasoline using binary solvent of Bronsted-based ionic liquids and non-volatile organic compound[J]. Chemical Papers, 2019, 73(11): 2757-2765.
9 Huang C P, Chen B H, Zhang J, et al. Desulfurization of gasoline by extraction with new ionic liquids[J]. Energy & Fuels, 2004, 18(6): 1862-1864.
10 Guo Z R, Du Y, Lei J H, et al. Oxidative desulfurization of fuel oil at room temperature catalyzed by ordered meso-macroporous HPW/SiO2[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(5): 1071-1076.
11 Rezvani M A, Rahmani P. Synthesis and characterization of new nanosphere hybrid nanocomposite polyoxometalate@ceramic@ polyaniline as a heterogeneous catalyst for oxidative desulfurization of real fuel[J]. Advanced Powder Technology, 2019, 30(12): 3214-3223.
12 Zhu L J, Lv X, Tong S Y, et al. Modification of zeolite by metal and adsorption desulfurization of organic sulfide in natural gas[J]. Journal of Natural Gas Science and Engineering, 2019, 69: 102941.
13 Dudley M W, Frost J W. Biocatalytic desulfurization of arylsulfonates[J]. Bioorganic & Medicinal Chemistry, 1994, 2(7): 681-690.
14 Lü H, Deng C L, Ren W Z, et al. Oxidative desulfurization of model diesel using [(C4H9)4N]6Mo7O24 as a catalyst in ionic liquids[J]. Fuel Processing Technology, 2014, 119: 87-91.
15 王鑫博, 李秀萍, 赵荣祥. EMIES/p-TsOH型低共熔溶剂的合成及其氧化脱硫性能的研究[J]. 燃料化学学报, 2019, 47(1): 104-112.
Wang X B, Li X P, Zhao R X. Synthesis of EMIES/p-TsOH type deep eutectic solvent and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 104-112.
16 李佳慧, 胡嘉, 赵荣祥, 等. 氯化胆碱/草酸型低共熔溶剂氧化脱除模拟油硫化物[J]. 燃料化学学报, 2014, 42(7): 870-876.
Li J H, Hu J, Zhao R X, et al. Oxidative desulfurization of model oil with choline chloride/oxalic acid as a eutectic solvent[J]. Journal of Fuel Chemistry and Technology, 2014, 42(7):870-876.
17 张贤杰, 张志, 李坚, 等. ChCl-EG低共熔溶剂的物化性质[J]. 昆明理工大学学报(自然科学版), 2016, 41(2): 8-14.
Zhang X J, Zhang Z, Li J, et al. Physicochemical properties of ChCl-EG deep eutectic solvents[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2016, 41(2): 8-14.
18 Azizi N, Edrisi M. Deep eutectic solvent catalyzed eco-friendly synthesis of imines and hydrobenzamides[J]. Monatshefte Für Chemie-Chemical Monthly, 2015, 146(10): 1695-1698.
19 Liu W, Yu Y Q, Cao L X, et al. Synthesis of monoclinic structured BiVO4 spindly microtubes in deep eutectic solvent and their application for dye degradation[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 1102-1108.
20 Abbott A P, Capper G, McKenzie K J, et al. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride[J]. Journal of Electroanalytical Chemistry, 2007, 599(2): 288-294.
21 Jiang W, Dong L, Liu W, et al. Designing multifunctional SO3H-based polyoxometalate catalysts for oxidative desulfurization in acid deep eutectic solvents[J]. RSC Advances, 2017, 7(87): 55318-55325.
22 Liu W, Jiang W, Zhu W Q, et al. Oxidative desulfurization of fuels promoted by choline chloride-based deep eutectic solvents[J]. Journal of Molecular Catalysis A: Chemical, 2016, 424: 261-268.
23 Julião D, Gomes A C, Pillinger M, et al. Desulfurization of diesel by extraction coupled with Mo-catalyzed sulfoxidation in polyethylene glycol-based deep eutectic solvents[J]. Journal of Molecular Liquids, 2020, 309:113093-113100.
24 Makoś P, Boczkaj G. Deep eutectic solvents based highly efficient extractive desulfurization of fuels — eco-friendly approach[J]. Journal of Molecular Liquids, 2019, 296: 111916-111926.
25 廖德仲. 硫酸钛的催化活性[J]. 应用化学, 2003, 20(4):403-405.
Liao D Z. The catalytic activity of titanium sulfate in ketalization and esterification[J]. Chinese Journal of Applied Chemistry, 2003, 20(4): 403-405.
26 李彬, 冯书晓, 章亚东. 硫酸钛催化合成乙二醇乙醚乙酸酯[J]. 精细化工, 2014, 31(6): 792-795.
Li B, Feng S X, Zhang Y D. Synthesis of ethylene glycol monoethyl ether acetate with titanium sulfate as catalyst[J]. Fine Chemicals, 2014, 31(6): 792-795.
27 Zhang Y, Li G, Kong L H, et al. Deep oxidative desulfurization catalyzed by Ti-based metal-organic frameworks[J]. Fuel, 2018, 219: 103-110.
28 Smolders S, Willhammar T, Krajnc A, et al. A titanium(Ⅳ)-based metal-organic framework featuring defect-rich Ti-O sheets as an oxidative desulfurization catalyst[J]. Angewandte Chemie International Edition, 2019, 58(27): 9160-9165.
[1] 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037.
[2] 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697.
[3] 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689.
[4] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[5] 陆勇, 刘对平, 李晨阳, 周吉彬, 叶茂. 光纤内窥图像法测量MTO催化剂表观形貌及其积炭量的实验研究[J]. 化工学报, 2022, 73(6): 2662-2668.
[6] 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182.
[7] 白文轩, 陈锦湘, 刘芬, 张静淙, 谷志平, 熊成铭, 施王军, 余江. 非水相金属基离子液体湿法氧化脱硫工艺:发展与展望[J]. 化工学报, 2022, 73(5): 1847-1862.
[8] 李春晖, 何辉, 何明键, 张萌, 高杨, 矫彩山. 离子液体萃取硝酸中Ce(Ⅳ)的动力学研究[J]. 化工学报, 2022, 73(4): 1606-1614.
[9] 许世佩, 王超, 李庆远, 张炳康, 许世伟, 张雪琴, 王诗颖, 丛梦晓. 氧化钙对油基钻屑热脱附产物影响的研究[J]. 化工学报, 2022, 73(4): 1724-1731.
[10] 李勇, 闫伦靖, 李晓荣, 靳鑫, 李挺, 刘倩, 王美君, 孔娇, 常丽萍, 鲍卫仁. 酸/碱催化剂对低阶煤热解挥发分转化行为的作用机制研究[J]. 化工学报, 2022, 73(3): 1173-1183.
[11] 王建, 雷子萱, 姚家钰, 李建, 刘育红. 对苯二甲醛酚醛树脂的制备及其固化动力学研究[J]. 化工学报, 2022, 73(3): 1403-1415.
[12] 金科, 王晨光, 马隆龙, 张琦. 核壳纳米材料制备及其在CO/CO2热催化加氢中的应用[J]. 化工学报, 2022, 73(3): 990-1007.
[13] 徐飞翔, 蒋丽群, 郑安庆, 赵增立. 碳基固体酸催化纤维素热解制备左旋葡聚糖和左旋葡萄糖酮[J]. 化工学报, 2022, 73(3): 1166-1172.
[14] 王中华, 郑淞生, 姚育栋, 陈日懿, 王兆林. 电催化分解氨制氢研究进展[J]. 化工学报, 2022, 73(3): 1008-1021.
[15] 王吴玉, 史玉竹, 严龙, 张兴华, 马隆龙, 张琦. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!