化工学报 ›› 2016, Vol. 67 ›› Issue (1): 165-175.DOI: 10.11949/j.issn.0438-1157.20151039
陈振涛, 徐春明
收稿日期:
2015-07-01
修回日期:
2015-11-04
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
徐春明
基金资助:
国家自然科学基金项目(21106183,21476257,21236009, U1463207);中国石油大学科研启动基金项目(01JB0195)。
CHEN Zhentao, XU Chunming
Received:
2015-07-01
Revised:
2015-11-04
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the Natural Science Foundation of China (21106183, 21476257, 21236009 and U1463207) and Science Foundation of China University of Petroleum (01JB0195).
摘要:
内扩散广泛存在于非均相催化反应过程中。重质油因为具有更大的分子尺寸和复杂的组成结构,其在催化转化过程中通过孔道的扩散传质受到显著影响,极大降低了重质油的高效转化和催化剂的有效利用。本文重点对重质油在孔道内扩散传质的主要研究方法(隔膜池、吸附扩散和反应动力学法)和现状、孔内扩散的影响因素以及内扩散对重质油催化转化的影响等方面进行了综述,还探讨了重质油催化转化过程中扩散传质研究的发展方向。
中图分类号:
陈振涛, 徐春明. 重质油在孔道内扩散传质的研究进展[J]. 化工学报, 2016, 67(1): 165-175.
CHEN Zhentao, XU Chunming. Progress of research on diffusional transport of heavy oil in pores[J]. CIESC Journal, 2016, 67(1): 165-175.
[1] | BOWEN W R, LIANG Y C, WILLIAMS P M. Gradient diffusion coefficients — theory and experiment [J]. Chemical Engineering Science, 2000, 55(13): 2359-2377. |
[2] | KOOIJMAN H A. A modification of the Stokes-Einstein equation for diffusivities in dilute binary mixtures [J]. Industrial & Engineering Chemistry Research, 2002, 41(13): 3326-3328. |
[3] | WILKE C R, CHANG P. Correlation of diffusion coefficients in dilute solutions [J]. AIChE Journal, 1955, 1(2): 264-270. |
[4] | TSAI C H, MASSOTH F E, LEE S Y, et al. Effects of solvent and solute configuration on restrictive diffusion in hydrotreating catalysts [J]. Industrial & Engineering Chemistry Research, 1991, 30(1): 22-28. |
[5] | TYN M T, CALUS W F. Diffusion coefficients in dilute binary liquid mixtures [J]. Journal of Chemical & Engineering Data, 1975, 20(1): 106-109. |
[6] | RENKIN E M. Capillary and cellular permeability to some compounds related to antipyrine [J]. American Journal of Physiology, 1953, 173(1): 125-130. |
[7] | FERRY J D. Ultrafilter membranes and ultrafiltration [J]. Chemical Reviews, 1936, 18(3): 373-455. |
[8] | PEPPENHEIMER J R, RENKIN E M, BORRERO LM. Filtration, diffusion and molecular sieving through peripheral capillary membranes: a contribution to the pore theory of capillary permeability [J]. American Journal of Physiology, 1951, 167: 34. |
[9] | LEE S Y, SEADER J D, TSAI C H, et al. Solvent and temperature effects on restrictive diffusion under reaction conditions [J]. Industrial & Engineering Chemistry Research, 1991, 30(4): 607-613. |
[10] | KATHAWALLA I A, ANDERSON J L. Pore size effects on diffusion of polystyrene in dilute solution [J]. Industrial & Engineering Chemistry Research, 1988, 27(5): 866-871. |
[11] | SHAO J H, BALTUS R E. Hindered diffusion of dextran and polyethylene glycol in porous membranes [J]. AIChE Journal, 2000, 46(6): 1149-1156. |
[12] | TSAI M C, CHEN Y W, LIC P. Restrictive diffusion under hydrotreating reactions of heavy residue oils in a trickle bed reactor [J]. Industrial & Engineering Chemistry Research, 1993, 32(8): 1603-1609. |
[13] | BRENNER H, GAYDOS L J. The constrained Brownian movement of spherical particles in cylindrical pores of comparable radius: models of the diffusive and convective transport of solute molecules in membranes and porous media [J]. Journal of Colloid and Interface Science, 1977, 58(2): 312-356. |
[14] | BALTUS R E. Partition coefficients of rigid, planar multisubunit complexes in cylindrical pores [J]. Macromolecules, 1989, 22(4): 1775-1779. |
[15] | NITSCHE J M, LIMBACH K W. Partition coefficients for distribution of rigid non-axisymmetric solutes between bulk solution and porous phases: toward shape-selective separations with controlled-pore materials [J]. Industrial & Engineering Chemistry Research, 1994, 33(5): 1391-1396. |
[16] | GIDDINGS J C, KUCERA E, RUSSELL C P, et al. Statistical theory for the equilibrium distribution of rigid molecules in inert porous networks. Exclusion chromatography [J]. The Journal of Physical Chemistry, 1968, 72(13): 4397-4408. |
[17] | BALTUS R E, ANDERSON J L. Hindered diffusion of asphaltenes through microporous membranes [J]. Chemical Engineering Science, 1983, 38(12): 1959-1969. |
[18] | BECK R E, SCHULTZ J S. Hindrance of solute diffusion within membranes as measured with microporous membranes of known pore geometry [J]. Biochimica et Biophysica Acta, 1972, 255(1): 273-303. |
[19] | CHANTONG A, MASSOTH F E. Restrictive diffusion in aluminas [J]. AIChE Journal, 1983, 29(5): 725-731. |
[20] | LEE S Y, SEADER J D, TSAI C H, et al. Restrictive diffusion under catalytic hydroprocessing conditions [J]. Industrial & Engineering Chemistry Research, 1991, 30(1): 29-38. |
[21] | GUTENWIK J, NILSSON B, AXELSSON A. Determination of protein diffusion coefficients in agarose gel with a diffusion cell [J]. Biochemical Engineering Journal, 2004, 19(1): 1-7. |
[22] | GUO Y H, LANGLEY K H, KARASZ F E. Hindered diffusion of polystyrene in controlled pore glasses [J]. Macromolecules, 1990, 23(7): 2022-2027. |
[23] | WU Y X, MA P S, LIU Y Q, et al. Diffusion coefficients of L-proline, L-threonine and L-arginine in aqueous solutions at 25℃ [J]. Fluid Phase Equilibria, 2001, 186(1/2): 27-38. |
[24] | 赵长伟,马沛生,朱春英,等. 葡萄糖水溶液扩散系数的测定与关联 [J].化工学报,2005,56(1):1-5.ZHAO C W, MA P S, ZHU C Y, et al. Measurement and correlation on diffusion coefficients of aqueous glucose solutions [J]. Journal of Chemical Industryand Engineering (China), 2005, 56(1): 1-5. |
[25] | SAKAI M, YOSHIHARA M, INAGAKI M. Hydrodynamic studies of dilute pitch solutions: the shape and size of pitch molecules [J]. Carbon, 1983, 21(6): 593-596. |
[26] | THRASH R J, PILDES R H. Diffusion of petroleum asphaltenes through well characterized porous membranes [C]//National Meeting of American Chemical Society, Division of Petroleum Chemistry. Atlanta, 1981, 26:515-525. |
[27] | BECK R E, SCHULTZ J S. Hindered diffusion in microporous membranes with known pore geometry [J]. Science, 1970, 170(3964): 1302-1305. |
[28] | SANE R C, WEBSTER I A, TSOTSIS C. A study of asphaltanes diffusion through unimodal porous membranes [J]. Studies in Surface Science and Catalysis, 1988, 38: 705-716. |
[29] | SANE R C, TSOTSIS T T, WEBSTER I A, et al. Studies of asphaltene diffusion and structure and their implications for resid upgrading [J]. Chemical Engineering Science, 1992, 47(9-11): 2683-2688. |
[30] | SANE R C. Diffusion of petroleum asphaltene in porous membranes [D]. Los Angeles: University of Southern California, 1991. |
[31] | SANE R C, TSOTSIS T T, WEBSTER I A. Hondo asphaltene diffusion in microporous track-etched membranes [C]//National Meeting of American Chemical Society, Division of Fuel Chemistry. Los Angeles, 1988, 33:237-247. |
[32] | CHEN Z T, XU C M, GAO J S, et al. Hindered diffusion of residue narrow cuts through polycarbonate membranes [J]. AIChE Journal, 2010, 56(8): 2030-2038. |
[33] | CHEN Z T, GAO J S, ZHAO S Q, et al. Effect of composition and configuration on hindered diffusion of residue fractions through polycarbonate membranes [J]. AIChE Journal, 2013, 59(4): 1369-1377. |
[34] | 陈振涛,徐春明,周浩,等. 减压渣油超临界流体萃取馏分在多孔有机膜中的扩散规律 [J]. 化工学报,2009,60(12):3042-3051.CHEN Z T, XU C M, ZHOU H, et al. Hindered diffusion of vacuum residue cuts through porous membranes [J]. Journal of Chemical Industry and Engineering (China), 2009, 60(12): 3042-3051. |
[35] | LIMBACH K W, WEI J. Restricted diffusion through granular materials [J]. AIChE Journal, 1990, 36(2): 242-248. |
[36] | MIEVILLE R L, TRAUTH D M, ROBINSON K K. Asphaltene characterization and diffusion measurement [C]//National Meeting of American Chemical Society, Division of Petroleum Chemistry. Miami Beach, 1989:635-643. |
[37] | YANG X F. Hindered diffusion of model compounds and asphaltenes in frash and aged catalysts extrudates [D]. Alabama: Auburn University, 1997. |
[38] | YANG X F, GUIN J A. Diffusion-controlled adsorptive uptake of coal and petroleum asphaltenes in a NiMo/Al2O3 hydrotreating catalyst [J]. Chemical Engineering Communications, 1998, 166(1): 57-79. |
[39] | YANG X F, GUIN J A. Hindered diffusion of coal and petroleum asphaltenes in a supported hydrotreating catalyst [C]//National Meeting of American Chemical Society, Division of Fuel Chemistry, 1996, 41: 1013-1019. |
[40] | YANG X F, GUIN J A. Pore diffusivities in deactivated unimodal and bimodal coal liquefaction catalysts [J]. Applied Catalysis A: General, 1996, 141(1/2): 153-174. |
[41] | MARCHAL C, ABDESSALEM E, TAYAKOUT-FAYOLLE M, et al. Asphaltene diffusion and adsorption in modified NiMo alumina catalysts followed by ultraviolet (UV) spectroscopy [J]. Energy & Fuels, 2010, 24(8): 4290-4300. |
[42] | LIU Z Y, CHEN S L, GE X J, et al. Measurement of diffusion coefficient of heavy oil in fluidized catalytic cracking (FCC) catalysts [J]. Energy & Fuels, 2010, 24(5): 2825-2829. |
[43] | SATTERFIELD C N, COLTON C K, PITCHER W H. Restricted diffusion in liquids within fine pores [J]. AIChE Journal, 1973, 19(3): 628-635. |
[44] | CHEN J W, YANG H, RING Z. Study of intra-particle diffusion effect on hydrodesulphurization of dibenzothiophenic compounds [J]. Catalysis Today, 2005, 109(1-4): 93-98. |
[45] | WARE R A, WEI J. Catalytic hydrodemetallation of nickel porphyrins (Ⅰ): Porphyrin structure and reactivity [J]. Journal of Catalysis, 1985, 93(1): 100-121. |
[46] | SMITH B J, WEI J. Deactivation in catalytic hydrodemetallation (Ⅰ): Model compound kinetic studies [J]. Journal of Catalysis, 1991, 132(1): 1-20. |
[47] | LI C P, CHEN Y W, TSAI M C. Highly restrictive diffusion under hydrotreating reactions of heavy residue oils [J]. Industrial & Engineering Chemistry Research, 1995, 34(3): 898-905. |
[48] | PHILIPPOPOULOS C, PAPAYANNAKOS N. Intraparticle diffusional effects and kinetics of desulfurization reactions and asphaltenes cracking during catalytic hydrotreatment of a residue [J]. Industrial & Engineering Chemistry Research, 1988, 27(3): 415-420 |
[49] | YANG C H, DU F, ZHENG H, et al Hydroconversion characteristics and kinetics of residue narrow fractions [J]. Fuel, 2005, 84(6): 675-684. |
[50] | 杨朝合,杜峰,韩忠祥,等. 重质油窄馏分的HDS和HDN反应动力学特性 [J]. 石油学报(石油加工),2000,16(1): 17-25.YANG C H, DU F, HAN Z X, et al. Characteristics on HDS and HDN kinetics of narrow fractions from residua [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2000, 16(1): 17-25. |
[51] | SCHNEIDER M H, ANDREWS A B, MITRA-KIRTLEY S, et al. Asphaltene molecular size by fluorescence correlation spectroscopy [J]. Energy& Fuels, 2007, 21(5): 2875-2882. |
[52] | KYRIACOU K C, SIVARAMAKRISHNA V V, BALTUS R E, et al. Measurement of diffusion coefficients of oil residual fractions using porous membranes [J]. Fuel, 1988, 67(1): 15-18. |
[53] | CHANG J, LIU J S, LI D D. Kinetics of resid hydrotreating reactions [J]. Catalysis Today, 1998, 43(3/4): 233-239. |
[54] | SEO G, MASSOTH F E. Effect of pressure and temperature on restrictive diffusion of solutes in aluminas [J]. AIChE Journal, 1985, 31(3): 494-496. |
[55] | MARROQUIN G, ANCHEYTA J, ESTEBAN C. A batch reactor study to determine effectiveness factors of commercial HDS catalyst [J]. Catalysis Today, 2005, 104(1): 70-75. |
[56] | MARAFI A, STANISLAUS A, FURIMSKY E. Kinetics and modeling of petroleum residues hydroprocessing [J]. Catalysis Reviews, 2010, 52(2): 204-324. |
[57] | CHEN H J, MASSOTH F E. Hydrodemetalation of vanadium and nickel porphyrins over sulfided cobalt-molybdenum/alumina catalyst [J]. Industrial & Engineering Chemistry Research, 1988, 27(9): 1629-1639. |
[58] | HUNG C W, WEI J. The kinetics of porphyrin hydrodemetallation. (Ⅰ): Nickel compounds [J]. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(2): 250-257. |
[59] | BURKHART R D. Effects of solvent and concentration on the diffusion of triplet anthracene [J]. The Journal of Physical Chemistry, 1977, 81(4): 370-372. |
[60] | SHAO J H, BALTUS R E. Effect of solute concentration on hindered diffusion in porous membranes [J]. AIChE Journal, 2000, 46(7): 1307-1316. |
[61] | MINTON A P, ROSS P D. Concentration dependence of the diffusion coefficient of hemoglobin [J]. The Journal of Physical Chemistry, 1978, 82(17): 1934-1938. |
[62] | GOSTING L J. A study of the diffusion of potassium chloride in water at 25℃ with the Gouy interference method [J]. Journal of the American Chemical Society, 1950, 72(10): 4418-4422. |
[63] | LOBO V M M, RIBEIRO A C F, VERISSIMO L M P. Diffusion coefficients in aqueous solutions of potassium chloride at high and low concentrations [J]. Journal of Molecular Liquids, 1998, 78(1/2): 139-149. |
[64] | AKCASU A Z, BENMOUNA M. Concentration effects on the dynamic structure factor in polymer solutions [J]. Macromolecules, 1978, 11(6): 1193-1198. |
[65] | WAN W, WHITTENBURG S L. Concentration dependence of the polymer diffusion coefficient [J]. Macromolecules, 1986, 19(3): 925-927. |
[66] | DURAND E, CLEMANCEY M, QUOINEAUD A-A,et al. 1H diffusion-ordered spectroscopy (DOSY) nuclear magnetic resonance (NMR) as a powerful tool for the analysis of hydrocarbon mixtures and asphaltenes [J]. Energy & Fuels, 2008, 22(4): 2604-2610. |
[67] | ÖSTLUND J-A, ANDERSSON S-I, NYDÉ M. Studies of asphaltenes by the use of pulsed-field gradient spin echo NMR [J]. Fuel, 2001, 80(11): 1529-1533. |
[68] | ANDERSEN S I, CHRISTENSEN S D. The critical micelle concentration of asphaltenes as measured by calorimetry [J]. Energy & Fuels, 1999, 14(1): 38-42. |
[69] | ROGEL E, LEÓN O, TORRES G, et al. Aggregation of asphaltenes in organic solvents using surface tension measurements [J]. Fuel, 2000, 79(11): 1389-1394. |
[70] | OH K, RING T A, DEO M D. Asphaltene aggregation in organic solvents [J]. Journal of Colloid and Interface Science, 2004, 271(1): 212-219. |
[71] | WARGADALAM V J, NORINAGA K, IINO M. Hydrodynamic properties of coal extracts in pyridine [J]. Energy & Fuels, 2001, 15(5): 1123-1128. |
[72] | PRIYANTO S, MANSOORI G A, SUWONO A. Measurement of property relationships of nano-structure micelles and coacervates of asphaltene in a pure solvent [J]. Chemical Engineering Science, 2001, 56(24): 6933-6939. |
[73] | MURILLO-HERNÁNDEZ J A, GARCÍA-CRUZ I, LÓPEZ-RAMÍEZ S, et al. Aggregation behavior of heavy crude oil-ionic liquids solutions by fluorescence spectroscopy [J]. Energy & Fuels, 2009, 23(9): 4584-4592. |
[74] | PIETRARU G-M, CRAMB D T. Changes in asphaltene microenvironments evidenced by fluorescence solvatochromism [J]. Langmuir, 2003, 19(4): 1026-1035. |
[75] | ANDREATTA G, BOSTROM N, MULLINS O C. High-Q ultrasonic determination of the critical nanoaggregate concentration of asphaltenes and the critical micelle concentration of standard surfactants [J]. Langmuir, 2005, 21(7): 2728-2736. |
[76] | ZENG H, SONG Y Q, JOHNSON D L, et al. Critical nanoaggregate concentration of asphaltenes by direct-current (DC) electrical conductivity [J]. Energy & Fuels, 2009, 23(3): 1201-1208. |
[77] | LISITZA N V, FREED D E, SEN P N, et al. Study of asphaltene nanoaggregation by nuclear magnetic resonance (NMR) [J]. Energy & Fuels, 2009, 23(3): 1189-1193. |
[78] | GOUAL L, SEDGHI M, ZENG H, et al. On the formation and properties of asphaltene nanoaggregates and clusters by DC-conductivity and centrifugation [J]. Fuel, 2011, 90(7): 2480-2490. |
[79] | MOSTOWFI F, INDO K, MULLINS O C, et al. Asphaltene nanoaggregates studied by centrifugation [J]. Energy & Fuels, 2009, 23(3): 1194-1200. |
[80] | GONCALVES S, CASTILLO J, FERNÁNDEZ A, et al. Absorbance and fluorescence spectroscopy on the aggregation behavior of asphaltene-toluene solutions [J]. Fuel, 2004, 83(13): 1823-1828. |
[81] | TANAKA R, SATO E, HUNT J E, et al. Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering [J]. Energy & Fuels, 2004, 18(4): 1118-1125. |
[82] | BOHRER M P, FETTERS L J, GRIZZUTI N, et al. Restricted diffusion of linear and star-branched polyisoprenes in porous membranes [J]. Macromolecules, 1987, 20(8): 1827-1833. |
[83] | GUILLOT G, LEGER L, RONDELEZ F. Diffusion of large flexible polymer chains through model porous membranes [J]. Macromolecules, 1985, 18(12): 2531-2537. |
[84] | BOHRER M P, PATTERSON G D, CARROLL P J. Hindered diffusion of dextran and ficoll in microporous membranes [J]. Macromolecules, 1984, 17(6): 1170-1173. |
[85] | DEEN W M, BOHRER M P, EPSTEIN N B. Effects of molecular size and configuration on diffusion in microporous membranes [J]. AIChE Journal, 1981, 27(6): 952-959. |
[86] | KATHAWALLA I A, ANDERSON J L, LINDSEY J S. Hindered diffusion of porphyrins and short-chain polystyrene in small pores [J]. Macromolecules, 1989, 22(3): 1215-1219. |
[87] | HAUSER A. MARAFI A, ALMUTAIRI A, et al. Comparative study of hydrodemetallization (HDM) catalyst aging by Boscan feed and Kuwait atmospheric residue [J]. Energy & Fuels, 2008, 22(5): 2925-2932. |
[88] | GRAY M R, ZHAO Y X, MCKNIGHTC M, et al. Coking of hydroprocessing catalyst by residue fractions of bitumen [J]. Energy & Fuels, 1999, 13(5): 1037-1045. |
[89] | 吴昊,牛传峰,戴立顺,等. 中东常压渣油加氢脱硫反应催化剂初期失活模型 [J]. 石油炼制与化工,2004,35(7):68-71.WU H, NIU C F, DAI L S, et al. Initial deactivation model of hydrodesulfurization catalysts for mideast atmospheric residue feedstocks [J]. Petroleum Processing and Petrochemicals, 2004, 35(7): 68-71. |
[90] | MAITY S K, PEREZ V H, ANCHEYTA J, et al. Catalyst deactivation during hydrotreating of Maya crude in a batch reactor [J]. Energy & Fuels, 2007, 21(2): 636-639. |
[91] | VOGELAAR B M, GAST J, DOUMA E M, et al. Coke deposition profiles during artificial aging of hydroprocessing catalysts [J]. Industrial & Engineering Chemistry Research, 2007, 46(2): 421-429. |
[92] | ANCHEYTA J, RANA M S, FURIMSKY E. Hydroprocessing of heavy petroleum feeds: tutorial [J]. Catalysis Today, 2005, 109(1-4): 3-15. |
[93] | FURIMSKY E, MASSOTH F E. Deactivation of hydroprocessing catalysts [J]. Catalysis Today, 1999, 52(4): 381-495. |
[94] | GUIN J A, TSAI K J, CURTIS C W. Intraparticle diffusivity reduction during hydrotreatment of coal-derived liquids [J]. Industrial & Engineering Chemistry Process Design and Development, 1986, 25(2): 515-520. |
[95] | RANA M S, ANCHEYTA J, MAITY S K, et al. Characteristics of Maya crude hydrodemetallization and hydrodesulfurization catalysts [J]. Catalysis Today, 2005, 104(1): 86-93. |
[96] | RANA M S, ANCHEYTA J, MAITY S K, et al. Maya crude hydrodemetallization and hydrodesulfurization catalysts: an effect of TiO2 incorporation in Al2O3 [J]. Catalysis Today, 2005, 109(1-4): 61-68. García-Cruz Isidoro; Lopez-Ramírez Simon; Duran-Valencia C.; Domínguez J. Manuel; Aburto Jorge. Aggregation behavior of heavy crude oil-ionic liquids solutions by fluorescence spectroscopy[J]. Energy & Fuels,2009, 23(9):4584-4592 |
[73] | Pietraru Gabriella-Maria; Cramb David T. Changes in asphaltene microenvironments evidenced by fluorescence solvatochromism[J]. Langmuir,2003, 19(4):1026-1035 |
[74] | Andreatta Gaëlle; Bostrom Neil; Mullins Oliver C. High-Q ultrasonic determination of the critical nanoaggregate concentration of asphaltenes and the critical micelle concentration of standard surfactants[J]. Langmuir,2005, 21(7):2728-2736 |
[75] | Zeng Huang; Song Yi-Qiao; Johnson David L.; Mullins Oliver C. Critical nanoaggregate concentration of asphaltenes by Direct-Current(DC) electrical conductivity[J]. Energy & Fuels,2009, 23(3):1201-1208 |
[76] | Lisitza Natalia V.; Freed Denise E.; Sen Pabitra N.; Song Yi-Qiao. Study of asphaltene nanoaggregation by nuclear magnetic resonance(NMR)[J]. Energy & Fuels,2009, 23(3):1189-1193 |
[77] | Goual Lamia; Sedghi Mohammad; Zeng Huang; Mostowfi Farshid; McFarlane Richard; Mullins Oliver C. On the formation and properties of asphaltene nanoaggregates and clusters by DC-conductivity and centrifugation[J]. Fuel,2011, 90(7):2480-2490 |
[78] | Mostowfi Farshid; Indo Kentaro; Mullins Oliver C.; McFarlane Richard. Asphaltene nanoaggregates studied by centrifugation[J]. Energy & Fuels,2009, 23(3):1194-1200 |
[79] | Goncalves S.; Castillo J.; Fernández A.; Hung J. Absorbance and fluorescence spectroscopy on the aggregation behavior of asphaltene-toluene solutions[J]. Fuel,2004, 83(13):1823-1828 |
[80] | Tanaka Ryuzo; Sato Eisaku; Hunt Jerry E.; Winans Randall E.; Sato Shinya; Takanohashi Toshimasa. Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering[J]. Energy & Fuels,2004, 18(4):1118-1125 |
[81] | Bohrer Michael P.; Fetters Lewis J.; Grizzuti Nino; Pearson Dale S.; Tirrell Matthew V. Restricted diffusion of linear and star-branched polyisoprenes in porous membranes[J]. Macromolecules,1987, 20(8):1827-1833 |
[82] | Guillot G.; Leger L.; Rondelez F. Diffusion of large flexible polymer chains through model porous membranes[J]. Macromolecules,1985, 18(12):2531-2537 |
[83] | Bohrer M. P.; Patterson Gary D.; Carroll P. J. Hindered diffusion of dextran and ficoll in microporous membranes[J]. Macromolecules,1984, 17(6):1170-1173 |
[84] | Deen W. M.; Bohrer M. P.; Epstein N. B. Effects of molecular size and configuration on diffusion in microporous membranes[J]. AIChE J,1981, 27(6):952-959 |
[85] | Kathawalla Imtiaz A.; Anderson John L.; Lindsey Jonathan S. Hindered diffusion of porphyrins and short-chain polystyrene in small pores[J]. Macromolecules,1989, 22(3):1215-1219 |
[86] | Hauser Andre. Marafi Abdulazim; Almutairi Adel; Stanislaus Anthony. Comparative study of hydrodemetallization(HDM) catalyst aging by Boscan feed and Kuwait atmospheric residue[J]. Energy & Fuels,2008, 22(5):2925-2932 |
[87] | Gray Murray R.; Zhao Yingxian; McKnight Craig M.; Komar David A.; Carruthers J. Donald. Coking of Hydroprocessing Catalyst by Residue Fractions of Bitumen[J]. Energy & Fuels,1999, 13(5):1037-1045 |
[88] | Wu Hao(吴昊); Niu Chuanfeng(牛传峰); Dai Lishun(戴立顺); Shi Yulin(石玉林). Initial deactivation model of hydrodesulfurization catalysts for mideast atmospheric residue feedstocks[J]. Petroleum Processing and Petrochemicals(石油炼制与化工),2004, 35(7):68-71 |
[89] | Maity S. K.; Perez V. H.; Ancheyta J.; Rana Mohan S. Catalyst Deactivation during Hydrotreating of Maya Crude in a Batch Reactor[J]. Energy & Fuels,2007, 21(2):636-639 |
[90] | Vogelaar Bas M.; Gast Jeroen; Douma Erwin M.; van Langeveld A. Dick; Eijsbouts Sonja; Moulijn Jacob A. Coke deposition profiles during artificial aging of hydroprocessing catalysts[J]. Ind. Eng. Chem. Res.,2007, 46(2):421-429 |
[91] | Ancheyta Jorge; Rana Mohan S.; Furimsky Edward. Hydroprocessing of heavy petroleum feeds:Tutorial[J]. Catalysis Today,2005, 109(1-4):3-15 |
[92] | Furimsky Edward; Massoth Franklin E. Deactivation of hydroprocessing catalysts[J]. Catalysis Today,1999, 52(4):381-495 |
[93] | Guin James A.; Tsai Kan Joe; Curtis Christine W. Intraparticle diffusivity reduction during hydrotreatment of coal-derived liquids[J]. Industrial & Engineering Chemistry Process Design and Development,1986, 25(2):515-520 |
[94] | Rana Mohan S.; Ancheyta J.; Maity S. K.; Rayo P. Characteristics of Maya crude hydrodemetallization and hydrodesulfurization catalysts[J]. Catalysis Today,2005, 104(1):86-93 |
[95] | Rana Mohan S.; Ancheyta J.; Maity S. K.; Rayo P. Maya crude hydrodemetallization and hydrodesulfurization catalysts:An effect of TiO2 incorporation in Al2O3[J]. Catalysis Today,2005, 109(1-4):61-68. |
[1] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[2] | 熊昊, 梁潇予, 张晨曦, 白浩隆, 范晓宇, 魏飞. 重质油直接制化工品:多级逆流下行催化裂解技术[J]. 化工学报, 2023, 74(1): 86-104. |
[3] | 关冬, 张霖宙, 赵锁奇, 徐春明. 重质油稳定性的耗散粒子动力学模拟[J]. 化工学报, 2022, 73(10): 4613-4624. |
[4] | 朱乐, 齐亮, 姚克俭, 谢晓峰. 磁电复合场下正极钒离子的跨膜传质[J]. 化工学报, 2016, 67(S1): 148-158. |
[5] | 林苏奔1,周国忠1,谢明辉1,郭鹏武2,杨海龙2. 组合式搅拌器对疏水缔合聚合物溶解特性的影响[J]. 化工进展, 2014, 33(07): 1707-1712. |
[6] | 陈爱城,陈胜利,桑 磊,薛 扬,娄亚峰. 重油分子的孔内受限扩散研究进展[J]. 化工进展, 2013, 32(12): 2813-2818. |
[7] | 汪源浩, 具本植, 张淑芬. 高黏度、高热稳定性羧甲基淀粉己酸酯的溶液性质[J]. 化工学报, 2013, 64(1): 275-282. |
[8] | 许心皓,段远源,杨震. RG-CPA方程计算超临界CO2-醇体系汽液相平衡[J]. 化工学报, 2012, 63(5): 1331-1337. |
[9] | 宁国庆,王 刚,高金森. 石油重质组分制备碳功能材料的研究进展 [J]. CIESC Journal, 2011, 30(9): 1998-. |
[10] | 徐春明, 赵锁奇, 卢春喜, 孙学文, 许志明, 鄂承林. 重质油梯级分离新工艺的工程基础研究 [J]. 化工学报, 2010, 61(9): 2393-2400. |
[11] | 张旭锋, 吴文辉. 兼有离子和疏水缔合两种结构特性的聚丙烯酰胺的缔合性能 [J]. 化工学报, 2009, 60(6): 1593-1599. |
[12] | 张怀平, 许凯, 陈德宏, 郑秋闿, 朱林华, 陈鸣才. 超临界二氧化碳中乙烯基三乙氧基硅烷改性丙烯酸的合成及溶液性质 [J]. 化工学报, 2008, 59(10): 2663-2667. |
[13] | 白荣光, 郭睿威, 蔡超. HPAM-g-P(NIPA-co-DMAM)的合成与温敏行为 [J]. 化工学报, 2007, 58(9): 2388-2394. |
[14] | 钟传蓉, 何文琼, 赖立, 罗平亚. 疏水改性阳离子型丙烯酰胺共聚物的微结构与絮凝性能 [J]. 化工学报, 2007, 58(8): 2138-2143. |
[15] | 欧阳朝斌;郭占成;万年青;乔 琦. 煤与重质油共气化热态模拟实验 [J]. CIESC Journal, 2007, 26(11): 1631-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||