化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1033-1041.DOI: 10.11949/0438-1157.20221438
毛元敬1(), 杨智1(), 莫松平1, 郭浩2, 陈颖1, 罗向龙1, 陈健勇1, 梁颖宗1
收稿日期:
2022-11-03
修回日期:
2022-12-26
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
杨智
作者简介:
毛元敬(2000—),男,硕士研究生,2112002077@mail2.gdut.edu.cn
基金资助:
Yuanjing MAO1(), Zhi YANG1(), Songping MO1, Hao GUO2, Ying CHEN1, Xianglong LUO1, Jianyong CHEN1, Yingzong LIANG1
Received:
2022-11-03
Revised:
2022-12-26
Online:
2023-03-05
Published:
2023-04-19
Contact:
Zhi YANG
摘要:
统计缔合流体理论(SAFT)状态方程对长链烷醇的热物性研究具有重要意义,而状态方程参数的获取是流体热物性研究的基础。基于SAFT-VR Mie状态方程,采用Levenberg-Marquardt算法并结合相平衡、过冷液相密度和声速性质的参数回归策略,获取C6~C10烷醇的状态方程模型参数。进一步评估SAFT-VR Mie状态方程对C6~C10烷醇在宽温度和压力范围内的相平衡和热力学偏导特性的预测性能,并与PC-SAFT状态方程进行比较。结果表明,SAFT-VR Mie对五种烷醇整体具有更优的饱和蒸气压、饱和液相密度、蒸发焓、过冷液相密度、比定压热容和声速预测性能,平均预测偏差分别为0.74%、0.82%、3.02%、0.54%、2.88%和2.31%。同时,SAFT-VR Mie具有可靠的外推预测能力,其对高压声速的预测结果与实验数据具有较好的一致性。此外,SAFT-VR Mie对压力-密度导数的不合理描述是造成声速预测偏差的主要原因。改进分子间单体和缔合相互作用能够有效提高比热容的预测精度,为长链烷醇缔合流体的热物性预测提供更好的理论关联模型。
中图分类号:
毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041.
Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols[J]. CIESC Journal, 2023, 74(3): 1033-1041.
图1 SAFT-VR Mie状态方程分子构型和参数回归流程示意图
Fig.1 Schematic diagram of the molecular configuration and parameter regression procedure of SAFT-VR Mie equation of state (EoS)
Substances | m | σ | (ε/k) | r | (εAB/k)/K | λr | AARD/% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ps | ρs | ΔHvap | ρl | cP | u | |||||||
1-hexanol (C6) | 2.4364 | 4.2407 | 315.79 | 0.28852 | 3102.4 | 11.9366 | 0.81 | 1.06 | 1.64 | 0.23 | 1.60 | 2.09 |
1-heptanol (C7) | 2.4415 | 4.4413 | 336.05 | 0.26707 | 3404.3 | 12.2372 | 0.81 | 0.73 | 3.11 | 0.57 | 2.00 | 2.12 |
1-octanol (C8) | 2.7639 | 4.4240 | 342.37 | 0.29096 | 3180.6 | 12.9708 | 0.67 | 0.61 | 3.21 | 0.64 | 3.17 | 3.61 |
1-nonanol (C9) | 2.9172 | 4.4871 | 358.14 | 0.26918 | 3398.7 | 13.3660 | 0.57 | 1.05 | 3.84 | 0.48 | 2.12 | 1.77 |
1-decanol (C10) | 2.4778 | 4.9442 | 409.06 | 0.28053 | 3457.4 | 14.3970 | 0.83 | 0.66 | 3.29 | 0.77 | 5.51 | 1.98 |
average | — | — | — | — | — | — | 0.74 | 0.82 | 3.02 | 0.54 | 2.88 | 2.31 |
表1 C6~C10烷醇SAFT-VR Mie状态方程参数回归及热物性预测结果
Table 1 Results of SAFT-VR Mie EoS parameter regression and thermodynamic properties prediction for C6—C10 alcohols
Substances | m | σ | (ε/k) | r | (εAB/k)/K | λr | AARD/% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ps | ρs | ΔHvap | ρl | cP | u | |||||||
1-hexanol (C6) | 2.4364 | 4.2407 | 315.79 | 0.28852 | 3102.4 | 11.9366 | 0.81 | 1.06 | 1.64 | 0.23 | 1.60 | 2.09 |
1-heptanol (C7) | 2.4415 | 4.4413 | 336.05 | 0.26707 | 3404.3 | 12.2372 | 0.81 | 0.73 | 3.11 | 0.57 | 2.00 | 2.12 |
1-octanol (C8) | 2.7639 | 4.4240 | 342.37 | 0.29096 | 3180.6 | 12.9708 | 0.67 | 0.61 | 3.21 | 0.64 | 3.17 | 3.61 |
1-nonanol (C9) | 2.9172 | 4.4871 | 358.14 | 0.26918 | 3398.7 | 13.3660 | 0.57 | 1.05 | 3.84 | 0.48 | 2.12 | 1.77 |
1-decanol (C10) | 2.4778 | 4.9442 | 409.06 | 0.28053 | 3457.4 | 14.3970 | 0.83 | 0.66 | 3.29 | 0.77 | 5.51 | 1.98 |
average | — | — | — | — | — | — | 0.74 | 0.82 | 3.02 | 0.54 | 2.88 | 2.31 |
Substances | Vapor-liquid equilibrium | Compressed liquid phase | |||||||
---|---|---|---|---|---|---|---|---|---|
T range/K | T range/K | P range/MPa | |||||||
Ps | ρs | ΔHvap | ρl | cP | u | ρl | cP | u | |
1-hexanol | 340—600 | 340—600 | 280—560 | 278—358 | 325—570 | 303—393 | 0.1—60 | 2—30 | 0.1—810 |
1-heptanol | 320—620 | 320—620 | 280—580 | 278—358 | 325—570 | 303—393 | 0.1—60 | 2—30 | 0.1—810 |
1-octanol | 320—640 | 320—640 | 280—630 | 278—358 | 325—570 | 291—433 | 0.1—60 | 2—30 | 0.1—811 |
1-nonanol | 340—640 | 340—640 | 300—640 | 278—358 | 298—318 | 303—393 | 0.1—60 | 0.1—100 | 0.1—506 |
1-decanol | 360—660 | 360—660 | 300—660 | 288—358 | 325—570 | 303—393 | 0.1—60 | 2—30 | 0.1—506 |
表2 热物性实验数据选取的温度和压力范围[7,31-34]
Table 2 The temperature and pressure range selected for the thermodynamic properties experimental data[7,31-34]
Substances | Vapor-liquid equilibrium | Compressed liquid phase | |||||||
---|---|---|---|---|---|---|---|---|---|
T range/K | T range/K | P range/MPa | |||||||
Ps | ρs | ΔHvap | ρl | cP | u | ρl | cP | u | |
1-hexanol | 340—600 | 340—600 | 280—560 | 278—358 | 325—570 | 303—393 | 0.1—60 | 2—30 | 0.1—810 |
1-heptanol | 320—620 | 320—620 | 280—580 | 278—358 | 325—570 | 303—393 | 0.1—60 | 2—30 | 0.1—810 |
1-octanol | 320—640 | 320—640 | 280—630 | 278—358 | 325—570 | 291—433 | 0.1—60 | 2—30 | 0.1—811 |
1-nonanol | 340—640 | 340—640 | 300—640 | 278—358 | 298—318 | 303—393 | 0.1—60 | 0.1—100 | 0.1—506 |
1-decanol | 360—660 | 360—660 | 300—660 | 288—358 | 325—570 | 303—393 | 0.1—60 | 2—30 | 0.1—506 |
图2 SAFT-VR Mie和PC-SAFT状态方程对C6~C10烷醇热物性平均预测偏差比较
Fig.2 Comparison of the deviations of SAFT-VR Mie and PC-SAFT EoS for predicting the thermodynamic properties of C6—C10 alcohols
图3 SAFT-VR Mie和PC-SAFT状态方程对正己醇(C6)声速预测结果比较(1 bar=105 Pa)
Fig.3 Comparison of the results of SAFT-VR Mie and PC-SAFT EoS for predicting the speed of sound of 1-hexanol (C6)
图4 SAFT-VR Mie和PC-SAFT状态方程对正辛醇(C8)声速预测结果比较
Fig.4 Comparison of the results of SAFT-VR Mie and PC-SAFT EoS for predicting the speed of sound of 1-octanol (C8)
图5 SAFT-VR Mie和PC-SAFT状态方程对正癸醇(C10)声速预测结果比较
Fig.5 Comparison of the results of SAFT-VR Mie and PC-SAFT EoS for predicting the speed of sound of 1-decanol (C10)
图6 SAFT-VR Mie和PC-SAFT状态方程对正己醇(C6)压力-密度和压力-温度导数预测结果比较
Fig.6 Comparison of the results of SAFT-VR Mie and PC-SAFT EoS for predicting the pressure-density and pressure-temperature derivatives of 1-hexanol (C6)
图7 SAFT-VR Mie和PC-SAFT状态方程对正己醇(C6)剩余比定容热容不同微观贡献预测结果比较
Fig.7 Comparison of different microscopic contributions of SAFT-VR Mie and PC-SAFT EoS for predicting residual isochoric specific heat capacity of 1-hexanol (C6)
图8 SAFT-VR Mie和PC-SAFT状态方程对正己醇(C6)二阶温度导数不同微观贡献预测结果比较
Fig.8 Comparison of different microscopic contributions of SAFT-VR Mie and PC-SAFT EoS for predicting second-order temperature derivative of 1-hexanol (C6)
1 | Hayer H, Haghbakhsh R, Keshtkari S, et al. Support vector machine and CPA EoS for the prediction of high-pressure liquid densities of normal alkanols[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(6): 2888-2898. |
2 | Menegazzo T A S, Soares Junior A M, Mota B T, et al. Application of an equation of state incorporating association to alcohols up to decanol[J]. Fluid Phase Equilibria, 2019, 482: 24-37. |
3 | Pokorný V, Štejfa V, Klajmon M, et al. Vapor pressures and thermophysical properties of 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol: data reconciliation and PC-SAFT modeling[J]. Journal of Chemical & Engineering Data, 2021, 66(1): 805-821. |
4 | Schwarz C E. High pressure phase behavior of the homologous series CO2+1-alcohols[J]. Journal of Chemical & Engineering Data, 2018, 63(7): 2451-2466. |
5 | Gunasekara S N, Martin V, Chiu J N. Phase equilibrium in the design of phase change materials for thermal energy storage: state-of-the-art[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 558-581. |
6 | Pakravesh A, Zarei F, Zarei H. PρT parameterization of SAFT equation of state: developing a new parameterization method for equations of state[J]. Fluid Phase Equilibria, 2021, 538: 113024. |
7 | Dávila M J, Alcalde R, Atilhan M, et al. PρT measurements and derived properties of liquid 1-alkanols[J]. The Journal of Chemical Thermodynamics, 2012, 47: 241-259. |
8 | Schubert T. Production routes of advanced renewable C1 to C4 alcohols as biofuel components—a review[J]. Biofuels, Bioproducts and Biorefining, 2020, 14(4): 845-878. |
9 | Yang Z, Gong M Q, Zhou Y, et al. Vapor-liquid equilibria of CH4, CO2 and their binary system CH4+CO2: a comparison between the molecular simulation and equation of state[J]. Science China Technological Sciences, 2015, 58(4): 650-658. |
10 | Diamantonis N I, Boulougouris G C, Mansoor E, et al. Evaluation of cubic, SAFT, and PC-SAFT equations of state for the vapor-liquid equilibrium modeling of CO2 mixtures with other gases[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3933-3942. |
11 | Redlich O, Kwong J N S. On the thermodynamics of solutions (Ⅴ): An equation of state. Fugacities of gaseous solutions[J]. Chemical Reviews, 1949, 44(1): 233-244. |
12 | Soave G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972, 27(6): 1197-1203. |
13 | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
14 | Kontogeorgis G M, Folas G K. Thermodynamic Models for Industrial Applications[M]. United Kingdom: John Wiley & Sons Ltd., 2009. |
15 | 吴瑕, 贾文龙, 李长俊, 等. 基于CPA状态方程计算天然气-甲醇-水气液相平衡[J]. 化学工程, 2018, 46(6): 37-41. |
Wu X, Jia W L, Li C J, et al. Phase equilibrium of natural gas/methanol/water mixtures by use of CPA EoS[J]. Chemical Engineering (China), 2018, 46(6): 37-41. | |
16 | De Villiers A J. Evaluation and improvement of the sPC-SAFT equation of state for complex mixtures[D]. Stellenbosch: Stellenbosch University, 2011. |
17 | Al-Saifi N M, Hamad E Z, Englezos P. Prediction of vapor-liquid equilibrium in water-alcohol-hydrocarbon systems with the dipolar perturbed-chain SAFT equation of state[J]. Fluid Phase Equilibria, 2008, 271(1/2): 82-93. |
18 | Chapman W G, Gubbins K E, Jackson G, et al. New reference equation of state for associating liquids[J]. Industrial & Engineering Chemistry Research, 1990, 29(8): 1709-1721. |
19 | Huang S H, Radosz M. Equation of state for small, large, polydisperse, and associating molecules[J]. Industrial & Engineering Chemistry Research, 1990, 29(11): 2284-2294. |
20 | Gross J, Sadowski G. Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules[J]. Industrial & Engineering Chemistry Research, 2001, 40(4): 1244-1260. |
21 | Lafitte T, Apostolakou A, Avendaño C, et al. Accurate statistical associating fluid theory for chain molecules formed from Mie segments[J]. The Journal of Chemical Physics, 2013, 139(15): 154504. |
22 | Jamali A, Behnejad H. Observations regarding the first and second order thermodynamic derivative properties of non-polar and light polar fluids by perturbed chain-SAFT equations of state[J]. Cryogenics, 2019, 99: 78-86. |
23 | 杨智, 公茂琼, 李会亚, 等. 基于不同的SAFT类状态方程研究甲烷的热物性[J]. 低温工程, 2015(3): 6-12. |
Yang Z, Gong M Q, Li H Y, et al. Thermophysical properties of methane studied by different SAFT-type equation of state[J]. Cryogenics, 2015(3): 6-12. | |
24 | 屈绍广, 王昶昊, 施云海, 等. 基团贡献状态方程的开发与热力学模型参数的理论预测[J]. 化工学报, 2020, 71(1): 200-208. |
Qu S G, Wang C H, Shi Y H, et al. Development of group-contribution equation of state and theoretical prediction of thermodynamic model parameters[J]. CIESC Journal, 2020, 71(1): 200-208. | |
25 | Hurter R M. Comparing the group-contribution SAFT-γ Mie equation of state with SAFT-VR Mie[D]. Stellenbosch: Stellenbosch University, 2019. |
26 | Ramírez-Vélez N, Piña-Martinez A, Jaubert J N, et al. Parameterization of SAFT models: analysis of different parameter estimation strategies and application to the development of a comprehensive database of PC-SAFT molecular parameters[J]. Journal of Chemical & Engineering Data, 2020, 65(12): 5920-5932. |
27 | Anoune I, Mimoune Z, Madani H, et al. New modified PC-SAFT pure component parameters for accurate VLE and critical phenomena description[J]. Fluid Phase Equilibria, 2021, 532: 112916. |
28 | Rehner P, Gross J. Multiobjective optimization of PCP-SAFT parameters for water and alcohols using surface tension data[J]. Journal of Chemical & Engineering Data, 2020, 65(12): 5698-5707. |
29 | Dufal S, Lafitte T, Galindo A, et al. Developing intermolecular-potential models for use with the SAFT-VR Mie equation of state[J]. AIChE Journal, 2015, 61(9): 2891-2912. |
30 | Cripwell J, Smith S A M, Schwarz C E, et al. SAFT-VR Mie: application to phase equilibria of alcohols in mixtures with n-alkanes and water[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 9693-9706. |
31 | Cibulka I. Saturated liquid densities of 1-alkanols from C1 to C10 and n-alkanes from C5 to C16: a critical evaluation of experimental data[J]. Fluid Phase Equilibria, 1993, 89(1): 1-18. |
32 | Fulem M, Růžička K, Růžička V. Heat capacities of alkanols. Part I. Selected 1-alkanols C2 to C10 at elevated temperatures and pressures[J]. Thermochimica Acta, 2002, 382(1): 119-128. |
33 | Postnikov E B, Goncharov A L, Cohen N, et al. Estimating the liquid properties of 1-alkanols from C5 to C12 by FT-EoS and CP-PC-SAFT: simplicity versus complexity[J]. The Journal of Supercritical Fluids, 2015, 104: 193-203. |
34 | Green D W, Southard M Z. Perry’s Chemical Engineers’ Handbook[M]. New York: McGraw-Hill Education, 2019. |
35 | Lee L L. Molecular Thermodynamics of Nonideal Fluids[M]. Amsterdam: Elsevier, 1988: 373-393. |
36 | Barker J A, Henderson D. Perturbation theory and equation of state for fluids (Ⅱ): A successful theory of liquids[J]. The Journal of Chemical Physics, 1967, 47(11): 4714-4721. |
37 | Barker J A, Henderson D. What is “liquid”? Understanding the states of matter[J]. Reviews of Modern Physics, 1976, 48(4): 587-671. |
38 | Wertheim M S. Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres[J]. The Journal of Chemical Physics, 1986, 85(5): 2929-2936. |
39 | Chapman W G, Gubbins K E, Jackson G, et al. SAFT: equation-of-state solution model for associating fluids[J]. Fluid Phase Equilibria, 1989, 52: 31-38. |
40 | Lafitte T, Piñeiro M M, Daridon J L, et al. A comprehensive description of chemical association effects on second derivative properties of alcohols through a SAFT-VR approach[J]. The Journal of Physical Chemistry. B, 2007, 111(13): 3447-3461. |
41 | Gross J, Sadowski G. Application of the perturbed-chain SAFT equation of state to associating systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(22): 5510-5515. |
42 | Zheng K, Wu H S, Geng C Y, et al. A comparative study of the perturbed-chain statistical associating fluid theory equation of state and activity coefficient models in phase equilibria calculations for mixtures containing associating and polar components[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 3014-3030. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[3] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[4] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[5] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[6] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[7] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
[8] | 张雪婷, 胡激江, 赵晶, 李伯耿. 高分子量聚丙二醇在微通道反应器中的制备[J]. 化工学报, 2023, 74(3): 1343-1351. |
[9] | 何金峰, 李秀珍, 寇建耀, 陶庭杰, 余灿, 刘欢, 陈永元, 赵豪健, 江大好, 李小年. 乙醇制高级醇有序介孔氧化铝负载铜基催化剂研究[J]. 化工学报, 2023, 74(3): 1082-1091. |
[10] | 王帅, 杨富凯, 徐新宇. 阻燃型全生物基多元醇聚氨酯泡沫的制备及性能研究[J]. 化工学报, 2023, 74(3): 1399-1408. |
[11] | 项望凯, 刘园园, 郑映, 潘鹏举. 基于熔融/固相缩聚制备中高分子量聚乙醇酸[J]. 化工学报, 2023, 74(2): 933-940. |
[12] | 程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652. |
[13] | 沈辰阳, 孙楷航, 张月萍, 刘昌俊. 二氧化碳加氢合成甲醇氧化铟及其负载金属催化剂研究进展[J]. 化工学报, 2023, 74(1): 145-156. |
[14] | 刘佳宁, 马嘉浩, 张军营, 程珏. 顺序双重热固化的硫醇-丙烯酸酯-环氧树脂三维网络的构建及性能[J]. 化工学报, 2022, 73(9): 4173-4186. |
[15] | 杨松涛, 李东洋, 牛玉清, 李鑫钢, 康绍辉, 李洪, 叶开凯, 周志全, 高鑫. 氟化物势能函数和热力学性质的分子模拟研究进展[J]. 化工学报, 2022, 73(9): 3828-3840. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 259
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 326
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||