化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4613-4624.DOI: 10.11949/0438-1157.20220768
收稿日期:
2022-05-31
修回日期:
2022-07-14
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
张霖宙
作者简介:
关冬(1993—),男,博士研究生,dongguan_cup@126.com
基金资助:
Dong GUAN(), Linzhou ZHANG(
), Suoqi ZHAO, Chunming XU
Received:
2022-05-31
Revised:
2022-07-14
Online:
2022-10-05
Published:
2022-11-02
Contact:
Linzhou ZHANG
摘要:
重质油的稳定性关乎其开采、储运及加工过程安全。准确的重质油稳定性判定方法对重质油生产及加工过程具有重要指导意义,然而重质油稳定性的经验判定法存在一定的局限性。从理论层面建立重质油稳定性的判定方法将提高重质油稳定性的预测准确度,本文基于耗散粒子动力学方法(DPD)模拟了不同重质油体系分子的微观聚集态。模拟结果表明,重质油体系的沥青质聚集率与胶体不稳定指数(C.I.I.)及稳定性判定图的判定结果吻合,验证了模拟体系的准确性。在此基础上,基于DPD模拟结果对C.I.I.及稳定性判定图的局限性进行了讨论,提出了改进的稳定性判定图用于重油稳定的快速判定。提出的重质油稳定性判定方法有望用于实际工业过程。
中图分类号:
关冬, 张霖宙, 赵锁奇, 徐春明. 重质油稳定性的耗散粒子动力学模拟[J]. 化工学报, 2022, 73(10): 4613-4624.
Dong GUAN, Linzhou ZHANG, Suoqi ZHAO, Chunming XU. Dissipative particle dynamics simulation of the stability of heavy oil[J]. CIESC Journal, 2022, 73(10): 4613-4624.
Bead | A2 | A4 | A6 | N2 | N3 | N4 | N6 | NI5 | NI6 | O | R2 | R3 | S | T | W |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A2 | 25.0 | ||||||||||||||
A4 | 25.0 | 25.0 | |||||||||||||
A6 | 25.2 | 25.1 | 25.0 | ||||||||||||
N2 | 27.6 | 29.1 | 31.0 | 25.0 | |||||||||||
N3 | 27.2 | 28.0 | 29.5 | 25.1 | 25.0 | ||||||||||
N4 | 27.5 | 28.2 | 29.2 | 25.2 | 25.0 | 25.0 | |||||||||
N6 | 34.1 | 35.6 | 37.5 | 25.8 | 26.5 | 26.8 | 25.0 | ||||||||
NI5 | 25.9 | 25.7 | 25.4 | 32.1 | 31.2 | 32.2 | 42.7 | 25.0 | |||||||
NI6 | 27.5 | 27.0 | 26.6 | 36.3 | 34.5 | 36.2 | 49.1 | 25.3 | 25.0 | ||||||
O | 28.8 | 28.0 | 27.3 | 40.0 | 37.7 | 37.9 | 51.7 | 25.7 | 25.1 | 25.0 | |||||
R2 | 32.2 | 35.4 | 38.9 | 26.1 | 27.1 | 28.1 | 25.3 | 39.4 | 45.5 | 51.3 | 25.0 | ||||
R3 | 31.8 | 33.3 | 36.4 | 25.7 | 26.3 | 26.9 | 25.0 | 38.0 | 42.7 | 47.9 | 25.1 | 25.0 | |||
S | 25.1 | 25.3 | 25.7 | 27.3 | 26.5 | 26.4 | 31.9 | 26.9 | 29.0 | 30.3 | 32.5 | 30.8 | 25.0 | ||
T | 40.3 | 40.9 | 41.8 | 39.9 | 39.4 | 39.2 | 42.5 | 44.5 | 48.3 | 49.8 | 44.6 | 42.9 | 39.6 | 25.0 | |
W | 78.8 | 99.4 | 106.6 | 114.5 | 99.1 | 151.8 | 202.4 | 78.7 | 74.4 | 79.5 | 135.7 | 150.1 | 112.4 | 169.6 | 25.0 |
表1 DPD珠子间的保守力参数
Table 1 Conservative force parameters between DPD beads
Bead | A2 | A4 | A6 | N2 | N3 | N4 | N6 | NI5 | NI6 | O | R2 | R3 | S | T | W |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A2 | 25.0 | ||||||||||||||
A4 | 25.0 | 25.0 | |||||||||||||
A6 | 25.2 | 25.1 | 25.0 | ||||||||||||
N2 | 27.6 | 29.1 | 31.0 | 25.0 | |||||||||||
N3 | 27.2 | 28.0 | 29.5 | 25.1 | 25.0 | ||||||||||
N4 | 27.5 | 28.2 | 29.2 | 25.2 | 25.0 | 25.0 | |||||||||
N6 | 34.1 | 35.6 | 37.5 | 25.8 | 26.5 | 26.8 | 25.0 | ||||||||
NI5 | 25.9 | 25.7 | 25.4 | 32.1 | 31.2 | 32.2 | 42.7 | 25.0 | |||||||
NI6 | 27.5 | 27.0 | 26.6 | 36.3 | 34.5 | 36.2 | 49.1 | 25.3 | 25.0 | ||||||
O | 28.8 | 28.0 | 27.3 | 40.0 | 37.7 | 37.9 | 51.7 | 25.7 | 25.1 | 25.0 | |||||
R2 | 32.2 | 35.4 | 38.9 | 26.1 | 27.1 | 28.1 | 25.3 | 39.4 | 45.5 | 51.3 | 25.0 | ||||
R3 | 31.8 | 33.3 | 36.4 | 25.7 | 26.3 | 26.9 | 25.0 | 38.0 | 42.7 | 47.9 | 25.1 | 25.0 | |||
S | 25.1 | 25.3 | 25.7 | 27.3 | 26.5 | 26.4 | 31.9 | 26.9 | 29.0 | 30.3 | 32.5 | 30.8 | 25.0 | ||
T | 40.3 | 40.9 | 41.8 | 39.9 | 39.4 | 39.2 | 42.5 | 44.5 | 48.3 | 49.8 | 44.6 | 42.9 | 39.6 | 25.0 | |
W | 78.8 | 99.4 | 106.6 | 114.5 | 99.1 | 151.8 | 202.4 | 78.7 | 74.4 | 79.5 | 135.7 | 150.1 | 112.4 | 169.6 | 25.0 |
编号 | C.I.I. | 沥青质/胶质 | 饱和分/芳香分 | M | 编号 | C.I.I. | 沥青质/胶质 | 饱和分/芳香分 | M | 编号 | C.I.I. | 沥青质/胶质 | 饱和分/芳香分 | M |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.25 | 0.3 | 0.3 | 0.5 | 34 | 0.50 | 0.7 | 0.4 | 0.5 | 67 | 1.50 | 0.2 | 2.2 | 0.5 |
2 | 0.25 | 0.3 | 0.3 | 1.0 | 35 | 0.50 | 0.8 | 0.4 | 0.5 | 68 | 1.50 | 0.2 | 4.1 | 2.0 |
3 | 0.25 | 0.3 | 0.3 | 2.0 | 36 | 0.50 | 0.9 | 0.3 | 0.5 | 69 | 1.50 | 0.3 | 2.1 | 0.5 |
4 | 0.25 | 0.3 | 0.3 | 3.0 | 37 | 0.50 | 1.0 | 0.3 | 0.5 | 70 | 1.50 | 0.5 | 2.0 | 0.5 |
5 | 0.50 | 0.5 | 0.5 | 0.5 | 38 | 0.50 | 1.2 | 0.2 | 0.5 | 71 | 1.50 | 0.5 | 2.5 | 1.0 |
6 | 0.50 | 0.5 | 0.5 | 1.0 | 39 | 1.00 | 0.1 | 3.9 | 3.0 | 72 | 1.50 | 0.5 | 4.5 | 3.0 |
7 | 0.50 | 0.5 | 0.5 | 2.0 | 40 | 1.00 | 0.1 | 2.8 | 2.0 | 73 | 1.50 | 0.5 | 3.5 | 2.0 |
8 | 0.50 | 0.5 | 0.5 | 3.0 | 41 | 1.00 | 0.1 | 1.5 | 0.5 | 74 | 1.50 | 0.7 | 2.3 | 1.0 |
9 | 1.00 | 1.0 | 1.0 | 0.5 | 42 | 1.00 | 0.2 | 3.4 | 3.0 | 75 | 1.50 | 0.8 | 2.9 | 2.0 |
10 | 1.00 | 1.0 | 1.0 | 1.0 | 43 | 1.00 | 0.2 | 2.6 | 2.0 | 76 | 1.50 | 0.8 | 1.9 | 0.5 |
11 | 1.00 | 1.0 | 1.0 | 2.0 | 44 | 1.00 | 0.2 | 1.4 | 0.5 | 77 | 1.50 | 0.8 | 2.2 | 1.0 |
12 | 1.00 | 1.0 | 1.0 | 3.0 | 45 | 1.00 | 0.3 | 1.7 | 1.0 | 78 | 1.50 | 0.8 | 3.6 | 3.0 |
13 | 1.50 | 1.5 | 1.5 | 0.5 | 46 | 1.00 | 0.3 | 3.1 | 3.0 | 79 | 1.50 | 1.0 | 2.0 | 1.0 |
14 | 1.50 | 1.5 | 1.5 | 1.0 | 47 | 1.00 | 0.3 | 1.4 | 0.5 | 80 | 1.50 | 1.0 | 3.0 | 3.0 |
15 | 1.50 | 1.5 | 1.5 | 2.0 | 48 | 1.00 | 0.3 | 2.4 | 2.0 | 81 | 1.50 | 1.2 | 2.1 | 2.0 |
16 | 1.50 | 1.5 | 1.5 | 3.0 | 49 | 1.00 | 0.4 | 1.3 | 0.5 | 82 | 1.50 | 1.3 | 1.7 | 1.0 |
17 | 0.25 | 0.1 | 0.5 | 1.0 | 50 | 1.00 | 0.4 | 2.8 | 3.0 | 83 | 2.00 | 0.3 | 3.7 | 1.0 |
18 | 0.25 | 0.1 | 0.3 | 0.5 | 51 | 1.00 | 0.4 | 2.2 | 2.0 | 84 | 2.00 | 0.4 | 3.6 | 1.0 |
19 | 0.25 | 0.2 | 0.3 | 0.5 | 52 | 1.00 | 0.5 | 1.5 | 1.0 | 85 | 2.00 | 0.6 | 2.7 | 0.5 |
20 | 0.25 | 0.3 | 0.2 | 2.0 | 53 | 1.00 | 0.5 | 2.5 | 3.0 | 86 | 2.00 | 0.6 | 3.4 | 1.0 |
21 | 0.25 | 0.3 | 0.2 | 1.0 | 54 | 1.00 | 0.6 | 1.4 | 1.0 | 87 | 2.00 | 0.6 | 4.8 | 2.0 |
22 | 0.25 | 0.4 | 0.2 | 0.5 | 55 | 1.00 | 0.6 | 2.2 | 3.0 | 88 | 2.00 | 0.7 | 3.3 | 1.0 |
23 | 0.25 | 0.5 | 0.1 | 0.5 | 56 | 1.00 | 0.7 | 1.2 | 0.5 | 89 | 2.00 | 0.9 | 2.6 | 0.5 |
24 | 0.50 | 0.1 | 1.0 | 1.0 | 57 | 1.00 | 0.7 | 1.6 | 2.0 | 90 | 2.00 | 0.9 | 4.2 | 2.0 |
25 | 0.50 | 0.1 | 0.9 | 1.0 | 58 | 1.00 | 0.9 | 1.1 | 0.5 | 91 | 2.00 | 1.1 | 3.8 | 2.0 |
26 | 0.50 | 0.2 | 1.4 | 3.0 | 59 | 1.00 | 1.1 | 0.8 | 2.0 | 92 | 2.00 | 1.1 | 4.7 | 3.0 |
27 | 0.50 | 0.2 | 0.8 | 1.0 | 60 | 1.00 | 1.2 | 0.9 | 0.5 | 93 | 2.00 | 1.2 | 2.8 | 1.0 |
28 | 0.50 | 0.3 | 0.6 | 0.5 | 61 | 1.00 | 1.3 | 0.4 | 2.0 | 94 | 2.00 | 1.2 | 4.4 | 3.0 |
29 | 0.50 | 0.3 | 0.7 | 1.0 | 62 | 1.00 | 1.4 | 0.8 | 0.5 | 95 | 2.00 | 1.3 | 2.4 | 0.5 |
30 | 0.50 | 0.3 | 0.9 | 2.0 | 63 | 1.00 | 1.4 | 0.2 | 2.0 | 96 | 2.00 | 1.3 | 3.4 | 2.0 |
31 | 0.50 | 0.4 | 0.6 | 0.5 | 64 | 1.00 | 1.5 | 0.5 | 1.0 | 97 | 2.00 | 1.4 | 2.6 | 1.0 |
32 | 0.50 | 0.4 | 0.8 | 3.0 | 65 | 1.50 | 0.1 | 4.3 | 2.0 | 98 | 2.00 | 1.4 | 3.8 | 3.0 |
33 | 0.50 | 0.6 | 0.5 | 0.5 | 66 | 1.50 | 0.1 | 2.2 | 0.5 | 99 | 2.00 | 1.5 | 3.0 | 2.0 |
表2 模拟体系
Table 2 Simulation systems
编号 | C.I.I. | 沥青质/胶质 | 饱和分/芳香分 | M | 编号 | C.I.I. | 沥青质/胶质 | 饱和分/芳香分 | M | 编号 | C.I.I. | 沥青质/胶质 | 饱和分/芳香分 | M |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.25 | 0.3 | 0.3 | 0.5 | 34 | 0.50 | 0.7 | 0.4 | 0.5 | 67 | 1.50 | 0.2 | 2.2 | 0.5 |
2 | 0.25 | 0.3 | 0.3 | 1.0 | 35 | 0.50 | 0.8 | 0.4 | 0.5 | 68 | 1.50 | 0.2 | 4.1 | 2.0 |
3 | 0.25 | 0.3 | 0.3 | 2.0 | 36 | 0.50 | 0.9 | 0.3 | 0.5 | 69 | 1.50 | 0.3 | 2.1 | 0.5 |
4 | 0.25 | 0.3 | 0.3 | 3.0 | 37 | 0.50 | 1.0 | 0.3 | 0.5 | 70 | 1.50 | 0.5 | 2.0 | 0.5 |
5 | 0.50 | 0.5 | 0.5 | 0.5 | 38 | 0.50 | 1.2 | 0.2 | 0.5 | 71 | 1.50 | 0.5 | 2.5 | 1.0 |
6 | 0.50 | 0.5 | 0.5 | 1.0 | 39 | 1.00 | 0.1 | 3.9 | 3.0 | 72 | 1.50 | 0.5 | 4.5 | 3.0 |
7 | 0.50 | 0.5 | 0.5 | 2.0 | 40 | 1.00 | 0.1 | 2.8 | 2.0 | 73 | 1.50 | 0.5 | 3.5 | 2.0 |
8 | 0.50 | 0.5 | 0.5 | 3.0 | 41 | 1.00 | 0.1 | 1.5 | 0.5 | 74 | 1.50 | 0.7 | 2.3 | 1.0 |
9 | 1.00 | 1.0 | 1.0 | 0.5 | 42 | 1.00 | 0.2 | 3.4 | 3.0 | 75 | 1.50 | 0.8 | 2.9 | 2.0 |
10 | 1.00 | 1.0 | 1.0 | 1.0 | 43 | 1.00 | 0.2 | 2.6 | 2.0 | 76 | 1.50 | 0.8 | 1.9 | 0.5 |
11 | 1.00 | 1.0 | 1.0 | 2.0 | 44 | 1.00 | 0.2 | 1.4 | 0.5 | 77 | 1.50 | 0.8 | 2.2 | 1.0 |
12 | 1.00 | 1.0 | 1.0 | 3.0 | 45 | 1.00 | 0.3 | 1.7 | 1.0 | 78 | 1.50 | 0.8 | 3.6 | 3.0 |
13 | 1.50 | 1.5 | 1.5 | 0.5 | 46 | 1.00 | 0.3 | 3.1 | 3.0 | 79 | 1.50 | 1.0 | 2.0 | 1.0 |
14 | 1.50 | 1.5 | 1.5 | 1.0 | 47 | 1.00 | 0.3 | 1.4 | 0.5 | 80 | 1.50 | 1.0 | 3.0 | 3.0 |
15 | 1.50 | 1.5 | 1.5 | 2.0 | 48 | 1.00 | 0.3 | 2.4 | 2.0 | 81 | 1.50 | 1.2 | 2.1 | 2.0 |
16 | 1.50 | 1.5 | 1.5 | 3.0 | 49 | 1.00 | 0.4 | 1.3 | 0.5 | 82 | 1.50 | 1.3 | 1.7 | 1.0 |
17 | 0.25 | 0.1 | 0.5 | 1.0 | 50 | 1.00 | 0.4 | 2.8 | 3.0 | 83 | 2.00 | 0.3 | 3.7 | 1.0 |
18 | 0.25 | 0.1 | 0.3 | 0.5 | 51 | 1.00 | 0.4 | 2.2 | 2.0 | 84 | 2.00 | 0.4 | 3.6 | 1.0 |
19 | 0.25 | 0.2 | 0.3 | 0.5 | 52 | 1.00 | 0.5 | 1.5 | 1.0 | 85 | 2.00 | 0.6 | 2.7 | 0.5 |
20 | 0.25 | 0.3 | 0.2 | 2.0 | 53 | 1.00 | 0.5 | 2.5 | 3.0 | 86 | 2.00 | 0.6 | 3.4 | 1.0 |
21 | 0.25 | 0.3 | 0.2 | 1.0 | 54 | 1.00 | 0.6 | 1.4 | 1.0 | 87 | 2.00 | 0.6 | 4.8 | 2.0 |
22 | 0.25 | 0.4 | 0.2 | 0.5 | 55 | 1.00 | 0.6 | 2.2 | 3.0 | 88 | 2.00 | 0.7 | 3.3 | 1.0 |
23 | 0.25 | 0.5 | 0.1 | 0.5 | 56 | 1.00 | 0.7 | 1.2 | 0.5 | 89 | 2.00 | 0.9 | 2.6 | 0.5 |
24 | 0.50 | 0.1 | 1.0 | 1.0 | 57 | 1.00 | 0.7 | 1.6 | 2.0 | 90 | 2.00 | 0.9 | 4.2 | 2.0 |
25 | 0.50 | 0.1 | 0.9 | 1.0 | 58 | 1.00 | 0.9 | 1.1 | 0.5 | 91 | 2.00 | 1.1 | 3.8 | 2.0 |
26 | 0.50 | 0.2 | 1.4 | 3.0 | 59 | 1.00 | 1.1 | 0.8 | 2.0 | 92 | 2.00 | 1.1 | 4.7 | 3.0 |
27 | 0.50 | 0.2 | 0.8 | 1.0 | 60 | 1.00 | 1.2 | 0.9 | 0.5 | 93 | 2.00 | 1.2 | 2.8 | 1.0 |
28 | 0.50 | 0.3 | 0.6 | 0.5 | 61 | 1.00 | 1.3 | 0.4 | 2.0 | 94 | 2.00 | 1.2 | 4.4 | 3.0 |
29 | 0.50 | 0.3 | 0.7 | 1.0 | 62 | 1.00 | 1.4 | 0.8 | 0.5 | 95 | 2.00 | 1.3 | 2.4 | 0.5 |
30 | 0.50 | 0.3 | 0.9 | 2.0 | 63 | 1.00 | 1.4 | 0.2 | 2.0 | 96 | 2.00 | 1.3 | 3.4 | 2.0 |
31 | 0.50 | 0.4 | 0.6 | 0.5 | 64 | 1.00 | 1.5 | 0.5 | 1.0 | 97 | 2.00 | 1.4 | 2.6 | 1.0 |
32 | 0.50 | 0.4 | 0.8 | 3.0 | 65 | 1.50 | 0.1 | 4.3 | 2.0 | 98 | 2.00 | 1.4 | 3.8 | 3.0 |
33 | 0.50 | 0.6 | 0.5 | 0.5 | 66 | 1.50 | 0.1 | 2.2 | 0.5 | 99 | 2.00 | 1.5 | 3.0 | 2.0 |
1 | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009: 52. |
Xu C M, Yang C H. Petroleum Refining Engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 52. | |
2 | Stankiewicz B A, Flannery M D, Fuex N A, et al. Prediction of asphaltene deposition risk in E&P operations[C]//3rd International Conference on Petroleum Phase Behavior and Fouling. New Orleans, LA(US), 2002: 410-416. |
3 | Asomaning S A, Watkinson A P. Petroleum stability and heteroatom species effects in fouling of heat exchangers by asphaltenes[J]. Heat Transfer Engineering, 2000, 21(3): 10-16. |
4 | Asomaning S A, Watkinson A P. Deposit formation by asphaltene-rich heavy oil mixtures on heat transfer surfaces[C]// Proceedings of an International Conference on Understanding Heat Exchanger Fouling and Its Mitigation. Castelvecchio Pascoli, Italy, 1997: 283-290. |
5 | Mushrush G W, Speight J G. Petroleum Products: Instability and Incompatibility[M]. Washington DC: Taylor & Francis, 1995: 12. |
6 | Yen T F. The colloidal aspect of a macrostructure of petroleum asphalt[J]. Fuel Science and Technology International, 1992, 10(4/5/6): 723-733. |
7 | Yen T F. Structure of petroleum asphaltene and its significance[J]. Energy Sources, 1974, 1(4): 447-463. |
8 | Yen T F, Erdman J G, Pollack S S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction[J]. Analytical Chemistry, 1961, 33(11): 1587-1594. |
9 | Mullins O C. The modified Yen model[J]. Energy & Fuels, 2010, 24(4): 2179-2207. |
10 | Andreatta G, Bostrom N, Mullins O C. High-Q ultrasonic determination of the critical nanoaggregate concentration of asphaltenes and the critical micelle concentration of standard surfactants[J]. Langmuir, 2005, 21(7): 2728-2736. |
11 | Andreatta G, Bostrom N, Mullins O C. Ultrasonic Spectroscopy of Asphaltene Aggregation[M]. New York: Springer, 2007: 231-257. |
12 | Mullins O C. Review of the molecular structure and aggregation of asphaltenes and petroleomics[J]. SPE Journal, 2008, 13(1): 48-57. |
13 | 杨朝合, 任文坡, 陈宏刚, 等. 重油组分宏观尺寸表征方法的研究进展[J]. 化工进展, 2008, 27(11): 1696-1702. |
Yang C H, Ren W P, Chen H G, et al. Research advances in macroscopic size characterization of heavy oil fractions[J]. Chemical Industry and Engineering Progress, 2008, 27(11): 1696-1702. | |
14 | Andreatta G, Goncalves C C, Buffin G, et al. Nanoaggregates and structure-function relations in asphaltenes[J]. Energy & Fuels, 2005, 19(4): 1282-1289. |
15 | Indo K, Ratulowski J, Dindoruk B, et al. Asphaltene nanoaggregates measured in a live crude oil by centrifugation[J]. Energy & Fuels, 2009, 23(9): 4460-4469. |
16 | Durand E, Clemancey M, Lancelin J M, et al. Aggregation states of asphaltenes: evidence of two chemical behaviors by 1H diffusion-ordered spectroscopy nuclear magnetic resonance[J]. The Journal of Physical Chemistry C, 2009, 113(36): 16266-16276. |
17 | 高金森, 徐春明, Kotlyar L S, 等. Athabasca油砂沥青中重组分的分子模拟[J]. 化工学报, 2003, 54(1): 9-17. |
Gao J S, Xu C M, Kotlyar L S, et al. Molecular modelling of heavy components present in Athabasca bitumen pitch[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(1): 9-17. | |
18 | Headen T F, Boek E S, Skipper N T. Evidence for asphaltene nanoaggregation in toluene and heptane from molecular dynamics simulations[J]. Energy & Fuels, 2009, 23(3): 1220-1229. |
19 | Frigerio F. Computer modeling and simulation of the nanoaggregation and solubility of crude oil asphaltenes[J]. WSEAS Transactions on Computers, 2010, 9(9): 919-928. |
20 | Frigerio F. Nanoaggregation and solubility of crude oil asphaltenes from molecular dynamics simulations[C]//International Conference on Computational Chemistry. San Donato Milanese, Italy, 2009: 51-57. |
21 | Wang J, Gayatri M A, Ferguson A L. Mesoscale simulation and machine learning of asphaltene aggregation phase behavior and molecular assembly landscapes[J]. The Journal of Physical Chemistry. B, 2017, 121(18): 4923-4944. |
22 | Aguilera-Mercado B, Herdes C, Murgich J, et al. Mesoscopic simulation of aggregation of asphaltene and resin molecules in crude oils[J]. Energy & Fuels, 2006, 20(1): 327-338. |
23 | Xu J B, Zhanga S F, Wu H, et al. Mesoscopic simulation of aggregate structure and stability of heavy crude oil by GPU accelerated DPD[J]. Chemical Engineering Transactions, 2011, 24: 1531-1536. |
24 | Zhang S F, Xu J B, Wen H, et al. Integration of rotational algorithms into dissipative particle dynamics: modeling polyaromatic hydrocarbons on the meso-scale[J]. Molecular Physics, 2011, 109(15): 1873-1888. |
25 | Zhang S F, Sun L L, Xu J B, et al. Aggregate structure in heavy crude oil: using a dissipative particle dynamics based mesoscale platform[J]. Energy & Fuels, 2010, 24(8): 4312-4326. |
26 | Wang S B, Xu J B, Wen H. Accelerating dissipative particle dynamics with multiple GPUs[J]. Computer Physics Communications, 2013, 184(11): 2454-2461. |
27 | Wang S B, Xu J B, Wen H. The aggregation and diffusion of asphaltenes studied by GPU-accelerated dissipative particle dynamics[J]. Computer Physics Communications, 2014, 185(12): 3069-3078. |
28 | Wang S B, Xu J B, Wen H. Dissipative particle dynamics simulation on the rheological properties of heavy crude oil[J]. Molecular Physics, 2015, 113(21): 3325-3335. |
29 | 张胜飞, 徐俊波, 温浩. 重质油中的分子聚集结构及其对重质油稳定性的影响[J]. 计算机与应用化学, 2011, 28(8): 965-971. |
Zhang S F, Xu J B, Wen H. Structure of molecular aggregates and its effect on the stability of heavy oil[J]. Computers and Applied Chemistry, 2011, 28(8): 965-971. | |
30 | 张胜飞, 孙丽丽, 徐俊波, 等. 重质油胶体聚集结构的耗散粒子动力学模拟[J]. 物理化学学报, 2010, 26(1): 57-65. |
Zhang S F, Sun L L, Xu J B, et al. Dissipative particle dynamics simulations on the structure of heavy oil aggregates[J]. Acta Physico-Chimica Sinica, 2010, 26(1): 57-65. | |
31 | Ruiz-Morales Y, Mullins O C. Coarse-grained molecular simulations to investigate asphaltenes at the oil-water interface[J]. Energy & Fuels, 2015, 29(3): 1597-1609. |
32 | Rezaei H, Amjad-Iranagh S, Modarress H. Self-accumulation of uncharged polyaromatic surfactants at crude oil-water interface: a mesoscopic DPD study[J]. Energy & Fuels, 2016, 30(8): 6626-6639. |
33 | Alvarez F, Flores E A, Castro L V, et al. Dissipative particle dynamics (DPD) study of crude oil-water emulsions in the presence of a functionalized co-polymer[J]. Energy & Fuels, 2011, 25(2): 562-567. |
34 | Guan D, Feng S, Zhang L Z, et al. Mesoscale simulation for heavy petroleum system using structural unit and dissipative particle dynamics (SU-DPD) frameworks[J]. Energy & Fuels, 2019, 33(2): 1049-1060. |
35 | Hoogerbrugge P J, Koelman J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics[J]. Europhysics Letters (EPL), 1992, 19(3): 155-160. |
36 | Koelman J M V A, Hoogerbrugge P J. Dynamic simulations of hard-sphere suspensions under steady shear[J]. Europhysics Letters (EPL), 1993, 21(3): 363-368. |
37 | Kong Y, Manke C W, Madden W G, et al. Simulation of a confined polymer in solution using the dissipative particle dynamics method[J]. International Journal of Thermophysics, 1994, 15(6): 1093-1101. |
38 | Español P. Hydrodynamics from dissipative particle dynamics[J]. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 52(2): 1734-1742. |
39 | Español P, Warren P. Statistical mechanics of dissipative particle dynamics[J]. Europhysics Letters (EPL), 1995, 30(4): 191-196. |
40 | Groot R D, Warren P B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation[J]. The Journal of Chemical Physics, 1997, 107(11): 4423-4435. |
41 | Quann R J, Jaffe S B. Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures[J]. Industrial & Engineering Chemistry Research, 1992, 31(11): 2483-2497. |
42 | Quann R J, Jaffe S B. Building useful models of complex reaction systems in petroleum refining[J]. Chemical Engineering Science, 1996, 51(10): 1615-1635. |
43 | Feng S, Cui C, Li K Y, et al. Molecular composition modelling of petroleum fractions based on a hybrid structural unit and bond-electron matrix (SU-BEM) framework[J]. Chemical Engineering Science, 2019, 201: 145-156. |
44 | Flekkøy E G, Coveney P V. From molecular dynamics to dissipative particle dynamics[J]. Physical Review Letters, 1999, 83(9): 1775-1778. |
[1] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[2] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[3] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[4] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[5] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[6] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[7] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[8] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[9] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[10] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[11] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[12] | 张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[13] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
[14] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
[15] | 杨松涛, 李东洋, 牛玉清, 李鑫钢, 康绍辉, 李洪, 叶开凯, 周志全, 高鑫. 氟化物势能函数和热力学性质的分子模拟研究进展[J]. 化工学报, 2022, 73(9): 3828-3840. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 291
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 317
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||