[1] |
Rakitin A V, Poberovskii A V, Timofeev Y M, Makarova M V, Conway T J. Variations in the column-average dry-air mole fractions of CO2 in the vicinity of St. Petersburg[J]. Atmospheric and Oceanic Physics, 2013, 49: 271-275
|
[2] |
HeHe H K, Zhong M J, Konkolewicz K, Rappold T, Sugar G, David N E, Gelb J, Kotwal N, Merkle A. Colloidal crystals: three-dimensionally ordered macroporous polymeric materials by colloidal crystal templating for reversible CO2 capture[J]. Adv. Funct. Mater., 2013, 23(37): 4719-4814
|
[3] |
Verweij H, Lin Y S, Dong J. Micro-porous silica and zeolite membranes for hydrogen purification[J]. MRS Bull. 2006, 31: 756-764
|
[4] |
Dong J H, Lin Y S, Kanezashi M. Microporous inorganic membranes for high temperature hydrogen purification[J]. J. Appl. Phys., 2008, 104: 121301-17
|
[5] |
Kanezashi M, O'Brien-Abraham J, Lin Y S, Suzuki K. Gas permeation through DDR-type zeolite membranes at high temperatures[J]. AIChE J., 2008, 54: 1478-1486
|
[6] |
Joerg K, Caro J. Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate[J]. Eur. J. Inorg. Chem., 2007, 2007(1): 60-64
|
[7] |
Car A, Stropnik C, Peinemann K V. Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation[J]. Desalination, 2006, 200(1/2/3): 424-426
|
[8] |
Guo H L, Zhu G S, Hewitt I J, Qiu S L.“Twin copper source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2[J]. J. Am. Chem. Soc., 2009, 131(5): 1646-1647
|
[9] |
Surendar R V, Carreon M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation[J]. J. Am. Chem. Soc., 2010, 132(1): 76-78
|
[10] |
Bai J F, Leiner E, Seheer M. P2 ligand complexes as building blocks for the formation of one-dimensional polymers[J]. Angew. Chem. Int. Ed., 2002, 418(5): 783-786
|
[11] |
Lin Y S, Yang W S. Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding[J]. J. Membrane Sci., 2004, 245(1/2): 41-51
|
[12] |
Takata Y, Tsuru T, Yoshioka T, Asaeda M. Gas permeation properties of MFI zeolite membranes prepared by the secondary growth of colloidal silicalite and application to the methylation of toluene[J]. Microp. Meso. Mater., 2002, 54(3): 257-268
|
[13] |
Liu Y Y, Zeng G F, Pan Y C, Lai Z P. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties[J]. J. Membrane Sci., 2011, 379(1/2): 46-51
|
[14] |
Qi B W, Yu A X, Zhu S B, Zhou M, Wu G. Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-β1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects[J]. J. Membrane Sci., 2013, 238(1): 23-30
|
[15] |
Zhou R F, Hu L L, Zhang Y J, Hu N, Chen X S, Lin X, Kita H. Synthesis of oriented zeolite T membranes from clear solutions and their pervaporation properties[J]. Micro. Meso. Mater., 2013, 174(1): 81-89
|
[16] |
Xiao J, Wei J. Diffusion mechanism of hydrocarbons in zeolites(Ⅰ): Theory[J]. Chem. Eng. Sci.,1992, 47(5): 1123-1141
|
[17] |
Bohme U, Barth B, Paula C, Kuhnt A, Schwieger W, Mundstock A, Caro J, Hartmann M. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8[J]. Langmuir, 2013, 29(27): 8592-8600
|
[18] |
Mondal S S, Dey S, Baburin I A, Kelling A, Schilde U, Seifert G, Janiak C, Holdt H J. Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal-organic frameworks with flexible ethoxy substituent[J]. Cryst. Eng. Comm., 2013, 15: 9394-9399
|
[19] |
Zhao Z X, Ma X L, Li Z, Lin Y S. Synthesis, characterization and gas transport properties of MOF-5 membranes[J]. J. Membrane Sci., 2011, 382(1/2): 82-90
|
[20] |
Zhao Z X, Ma X L, Kasik A, Li Z, Lin Y S. Gas separation properties of metal organic framework (MOF-5) membranes[J]. Ind. Eng. Chem. Res., 2013, 52(3): 1102-1108
|