化工学报 ›› 2017, Vol. 68 ›› Issue (4): 1474-1481.DOI: 10.11949/j.issn.0438-1157.20161390

• 过程系统工程 • 上一篇    下一篇

基于多目标粒子群算法的污水处理智能优化控制

韩红桂, 张璐, 乔俊飞   

  1. 北京工业大学信息学部, 北京 100124
  • 收稿日期:2016-10-07 修回日期:2016-11-29 出版日期:2017-04-05 发布日期:2017-04-05
  • 通讯作者: 韩红桂
  • 基金资助:

    国家自然科学基金项目(61622301,61533002);北京市教育委员会科研计划项目(KZ201410005002,km201410005001)。

Intelligent optimal control for wastewater treatment based on multi-objective particle swarm algorithm

HAN Honggui, ZHANG Lu, QIAO Junfei   

  1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
  • Received:2016-10-07 Revised:2016-11-29 Online:2017-04-05 Published:2017-04-05
  • Supported by:

    supported by the National Natural Science Foundation of China (61622301, 61533002) and Beijing Municipal Education Commission Science and Technology Development Program (KZ201410005002, km201410005001).

摘要:

为了满足污水处理过程出水水质排放达标的同时降低运行能耗,提出了一种基于多目标粒子群的污水处理多目标智能优化控制方法。首先,通过分析污水处理运行数据,建立了基于自适应回归核函数的污水处理能耗和出水水质模型;其次,设计出一种污水处理多目标优化方法,利用多目标粒子群优化算法同时对污水处理自适应能耗和出水水质模型进行优化,获得溶解氧和硝态氮浓度的优化设定值;最后,利用PID控制器对溶解氧和硝态氮浓度优化设定值进行跟踪控制,实现了污水处理过程的多目标优化控制。基于污水处理基准仿真平台BSM1的实验结果显示,该多目标优化控制方法不但能够保证出水水质达标,而且能有效降低污水处理过程的能耗。

关键词: 污水处理过程, 智能优化控制, 多目标粒子群, 能耗模型, 出水水质模型

Abstract:

To meet effluent quality (EQ) standard and reduce energy consumption (EC) of wastewater treatment process (WWTP), a multi-objective optimal control method was developed based on multi-objective particle swarm optimization (MOPSO). First, EC and EQ models from adaptive regressive kernel functions were established by analysis of operation data. Then, MOPSO was designed to optimize EC and EQ models and to reach optimal set-points of dissolved oxygen (SO) and nitrate (SNO) simultaneously. Finally, PID controller was used to trace the optimal set-points of SO and SNO so as to achieve multi-objective optimal control of WWTP. The experimental results from Benchmark Simulation Model 1 (BSM1) for wastewater treatment demonstrated that the proposed multi-objective optimal control method could assuredly meet effluent quality standard as well as effectively reduce energy consumption.

Key words: wastewater treatment process, intelligent optimal control, multi-objective particle swarm, energy consumption model, effluent quality model

中图分类号: