[1] |
DURAN-VILLALOBOS C A, LENNOX B, LAURI D. Multivariate batch to batch optimisation of fermentation processes incorporating validity constraints[J]. Journal of Process Control, 2016, 46:34-42.
|
[2] |
GOLDRICK S, ?TEFAN A, LOVETT D, et al. The development of an industrial-scale fed-batch fermentation simulation[J]. Journal of Biotechnology, 2015, 193:70-82.
|
[3] |
李慧娟. 青霉素发酵过程建模与优化[D]. 沈阳:东北大学, 2010. LI H J. Modeling and optimization for the fermentation process of penicillin[D]. Shenyang:Northeastern University, 2010.
|
[4] |
WU J, WANG J, YU T, et al. An approach to continuous approximation of Pareto front using geometric support vector regression for multi-objective optimization of fermentation process[J]. Chinese Journal of Chemical Engineering, 2014, 22(10):1131-1140.
|
[5] |
ZHU Y, YUAN J. A new parameter optimization algorithm of penicillin fermentation model[C]//International Conference on Transportation, Mechanical, and Electrical Engineering. IEEE, 2011:1725-1728.
|
[6] |
CORTASSA S, CACERES V, BELL L N, et al. From metabolomics to fluxomics:a computational procedure to translate metabolite profiles into metabolic fluxes[J]. Biophysical Journal, 2015, 108(1):163-172.
|
[7] |
STEPHANOPOULOS G. Metabolic fluxes and metabolic engineering[J]. Metabolic Engineering, 1999, 1(1):1-11.
|
[8] |
LEE S Y, PARK J M, KIM T Y. Application of metabolic flux analysis in metabolic engineering[J]. Methods in Enzymology, 2011, 498:67.
|
[9] |
何宁, 李寅, 陈坚. 新型生物絮凝剂REA-11的代谢模型建立与代谢网络分析[J]. 化工学报, 2005, 56(4):681-688. HE N, LI Y, CHEN J. Metabolic network modeling and metabolic flux analysis of production of novel bioflocculant REA-11[J]. Journal of Chemical Industry & Engineering(China), 2005, 56(4):681-688.
|
[10] |
GAO H J, DU G C, CHEN J. Analysis of metabolic fluxes for hyaluronic acid (HA) production by Streptococcus zooepidemicus[J]. World Journal of Microbiology & Biotechnology, 2007, 22(11):11-11.
|
[11] |
FERNANDES S, BASTIN G, WOUWER A V. Metabolic flux analysis of hybridoma cells:underdetermined network and influence of batch and perfusion operating modes[J]. IFAC-PapersOnLine, 2015, 48(1):464-469.
|
[12] |
VALLINO J J, STEPHANOPOULOS G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction[J]. Biotechnology & Bioengineering, 2000, 67(6):872-885.
|
[13] |
VERCAMMEN D, LOGIST F, IMPE J V. Online moving horizon estimation of fluxes in metabolic reaction networks[J]. Journal of Process Control, 2016, 37(6):1-20.
|
[14] |
TAKIGUCHI N, SHIMIZU H, SHIOVA S. An on-line physiological state recognition system for the lysine fermentation process based on a metabolic reaction model[J]. Biotechnology & Bioengineering, 1997, 55(1):170.
|
[15] |
LEE J S, NISHIKAWA T, MOTTER A E. Why optimal states recruit fewer reactions in metabolic networks[J]. Discrete & Continuous Dynamical Systems-Series A (DCDS-A), 2017, 32(8):2937-2950.
|
[16] |
VARMA A, BOESCH B W, PALSSON B O. Biochemical production capabilities of Escherichia coli[J]. Biotechnology & Bioengineering, 1993, 42(1):59.
|
[17] |
HOQUE M A, SIDDIQUEE K A Z, SHIMIZU K. Metabolic control analysis of gene-knockout Escherichia coli, based on the inverse flux analysis with experimental verification[J]. Biochemical Engineering Journal, 2004, 19(1):53-59.
|
[18] |
MARTINS C P R, SAUTER T, PFAU T. Constraint based modeling going multicellular[J]. Frontiers in Molecular Biosciences, 2016, 3(4):3.
|
[19] |
KAUFFMAN K J, PRAKASH P, EDWARDS J S. Advances in flux balance analysis[J]. Current Opinion in Biotechnology, 2003, 14(5):491-496.
|
[20] |
TAI M, STEPHANOPOULOS G N. Metabolic engineering:enabling technology for biofuels production[J]. Metabolic Engineering, 2008, 10(6):293-294.
|
[21] |
LEIGHTY R W, ANTONIEWICZ M R. Dynamic metabolic flux analysis (DMFA):a framework for determining fluxes at metabolic non-steady state[J]. Metabolic Engineering, 2011, 13(6):745-755.
|
[22] |
MARTINEZ V S, BUCHSTEINER M, GRAY P, et al. Dynamic metabolic flux analysis using B-splines to study the effects of temperature shift on CHO cell metabolism[J]. Metabolic Engineering Communications, 2015, 2:46-57.
|
[23] |
PRAUßE M T E, SCHÄUBLE S, GUTHKE R, et al. Computing the various pathways of penicillin synthesis and their molar yields[J]. Biotechnology & Bioengineering, 2016, 113(1):173-181.
|
[24] |
JORGENSEN H, NIELSEN J, VILLADSEN J, et al. Metabolic flux distributions in penicillium chrysogenum during fed-batch cultivations[J]. Biotechnology & Bioengineering, 1995, 46(2):117-131.
|
[25] |
KNIGHT J T, ZAHRADKA F T, SINGER D J, et al. Multiobjective particle swarm optimization of a planing craft with uncertainty[J]. Journal of Ship Production & Design, 2017, 30(4):194-200.
|
[26] |
KENNEDY J, EBERHART R. Particle Swarm Optimization[M]. New York:Springer, 2011.
|
[27] |
ANOTONIEWICZ M R. Dynamic metabolic flux analysis-tools for probing transient states of metabolic networks[J]. Current Opinion Biotechnology, 2013, 24(6):973-978.
|
[28] |
VARMA A, PALSSON B O. Metabolic flux balancing:basic concepts, scienti?c and practical use[J]. Nature Biotechnology, 1994, 12(10):994-998.
|
[29] |
VERCAMMEN D, LOGIST F, IMPE J V. Dynamic estimation of specific fluxes in metabolic networks using non-linear dynamic optimization[J]. Computer Aided Chemical Engineering, 2014, 8(1):132.
|
[30] |
GAO Y, ZHAO Z, LIU F. DMFA-based operation model for fermentation processes[J]. Computers & Chemical Engineering, 2018, 109:138-150.
|
[31] |
JIN C, ZHANG Y, BALAKRISHNAN S, et al. Local maxima in the likelihood of Gaussian mixture models:structural results and algorithmic consequences[C]//Advances in Neural Information Processing Systems. 2016:4116-4124.
|
[32] |
YU J, QIN S J. Multiway Gaussian mixture model based multiphase batch process monitoring[J]. Industrial & Engineering Chemistry Research, 2009, 48(18):8585-8594.
|
[33] |
ZENG J, XIE L, GAO C, et al. Soft sensor development using non-Gaussian just-in-time modeling[C]//Decision and Control and European Control Conference. IEEE, 2011:5868-5873.
|
[34] |
KIM S, KANO M, NAKAGAWA H, et al. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection[J]. International Journal of Pharmaceutics, 2011, 421(2):269-274.
|
[35] |
NILASHI M, IBRAHIM O B, ITHNIN N, et al. A multi-criteria collaborative filtering recommender system for the tourism domain using expectation maximization (EM) and PCA-ANFIS[J]. Electronic Commerce Research & Applications, 2015, 14(6):542-562.
|
[36] |
耿俊. 青霉素发酵过程的模型化研究[D]. 上海:上海交通大学, 2009. GENG J. Research for the modeling of penicillium chrysogenum fed-batch fermentation process[D]. Shanghai:Shanghai Jiao Tong University, 2009.
|
[37] |
JOHNSSON O, ANDERSSON J, LIDEN G, et al. Modelling of the oxygen level response to feed rate perturbations in an industrial scale fermentation process[J]. Process Biochemistry, 2015, 50(4):507-516.
|
[38] |
SHI Y, EBERHART R C. Parameter selection in particle swarm optimization[M]//Evolutionary Programming Ⅶ. Berlin:Springer Berlin Heidelberg, 1998:591-600.
|
[39] |
HUANG V L, SUGANTHAN P N, LIANG J J. Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems[J]. International Journal of Intelligent Systems, 2006, 21(2):209-226.
|
[40] |
裴胜玉, 周永权. 基于Pareto最优解集的多目标粒子群优化算法[J]. 计算机工程与科学, 2010, 32(11):85-88. PEI S Y, ZHOU Y Q. A multi-objective particle swarm algorithm based on the Pareto optimization solution set[J]. Computer Engineering & Science, 2010, 32(11):85-88.
|
[41] |
LIU Y. Modelling of the penicillin fermentation process via LS-SVM based on Pensim simulator[J]. Chemical Reaction Engineering & Technology, 2006,22(3):252-258.
|
[42] |
HUANG J, JI G, ZHU Y, et al. Identification of multi-model LPV models with two scheduling variables[J]. Journal of Process Control, 2012, 22(7):1198-1208.
|
[43] |
SEKAR B S, SEOL E, RAJ S M, et al. Co-production of hydrogen and ethanol by pfkA -deficient Escherichia coli, with activated pentose-phosphate pathway:reduction of pyruvate accumulation[J]. Biotechnology for Biofuels, 2016, 9(1):95.
|