化工学报 ›› 2017, Vol. 68 ›› Issue (5): 1987-1997.DOI: 10.11949/j.issn.0438-1157.20161826

• 过程系统工程 • 上一篇    下一篇

基于PLSR自适应深度信念网络的出水总磷预测

王功明1,2, 李文静1,2, 乔俊飞1,2   

  1. 1 北京工业大学信息学部, 北京 100124;
    2 计算智能与智能系统北京市重点实验室, 北京 100124
  • 收稿日期:2016-12-29 修回日期:2017-02-14 出版日期:2017-05-05 发布日期:2017-05-05
  • 通讯作者: 王功明
  • 基金资助:

    国家杰出青年科学基金项目(61225016);国家自然科学基金项目(61533002,61603009);中国博士后科学基金项目(2015M570910);朝阳区博士后科研基金项目(2015ZZ-6);北京工业大学基础研究基金项目(002000514315501)。

Prediction of effluent total phosphorus using PLSR-based adaptive deep belief network

WANG Gongming1,2, LI Wenjing1,2, QIAO Junfei1,2   

  1. 1 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
    2 Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China
  • Received:2016-12-29 Revised:2017-02-14 Online:2017-05-05 Published:2017-05-05
  • Supported by:

    supported by the National Science Foundation for Distinguished Young Scholars of China (61225016), the National Natural Science Foundation of China (61533002, 61603009), the China Postdoctoral Science Foundation (2015M570910), the Chaoyang District Postdoctoral Research Foundation (2015ZZ-6), the Basic Research Foundation Project of Beijing University of Technology (002000514315501).

摘要:

针对污水处理过程出水总磷预测问题存在的强非线性、大时变等特征,提出了一种基于偏最小二乘回归自适应深度信念网络(partial least square regression adaptive deep belief network,PLSR-ADBN)的出水总磷预测方法。PLSR-ADBN是基于深度学习模型DBN的一种改进型建模方法。首先,将自适应学习率引入到DBN的无监督预训练(pre-training)阶段,来提高网络收敛速度。其次,利用PLSR方法取代传统DBN中基于梯度的逐层权值精调(fine-tuning)方法,来提高网络预测精度。同时,通过构造李雅普诺夫函数证明了PLSR-ADBN学习过程的收敛性。最后,将PLSR-ADBN用于实际污水处理过程出水总磷预测中。实验结果表明所提出的PLSR-ADBN收敛速度快且预测精度高,能够满足实际污水处理过程对出水总磷监测精度和运行效率的要求。

关键词: 出水总磷, PLSR, 自适应学习率, 深度学习, 深度信念网络

Abstract:

Considered high nonlinearity and large transient variation, a PLSR-adaptive deep belief network (PLSR-ADBN) was proposed for prediction of total phosphorus (TP) in effluent of wastewater treatment process (WWTP). The PLSR-ADBN was an improved DBN, a deep learning model. First, an adaptive learning rate was introduced into the unsupervised pre-training stage of DBN so as to accelerate convergence rate. Secondly, PLSR was used to replace gradient fine-tuning method in conventional DBN for improving prediction accuracy. Meanwhile, a Lyapunov function was constructed to prove convergence of the PLSR-ADBN learning process. Finally, the proposed PLSR-ADBN was applied to an actual TP prediction in WWTP. The experimental results show that the method has a fast convergence rate and a high prediction accuracy, which can meet the demands for TP detection accuracy and WWTP operating efficiency.

Key words: total phosphorus in effluent, PLSR, adaptive learning rate, deep learning, deep belief network

中图分类号: