[1] |
SHAO M, HAN X, XIE Z, et al. Comparative study on macroinvertebrate communities along a reservoir cascade in Xiangxi River Basin[J]. Acta Ecologica Sinica, 2007, 27(12): 4963-4971.
|
[2] |
LIU L, LIU D, JOHNSON D M, et al. Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: implications for management[J]. Water Research, 2012, 46(7): 2121-2130.
|
[3] |
JIANG L, LIANG B, XUE Q, et al. Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River watershed, Three Gorges Reservoir, China[J]. Chemosphere, 2016, 150: 130-138.
|
[4] |
DUPAS R, DELMAS M, DORIOZ J M, et al. Assessing the impact of agricultural pressures on N and P loads and eutrophication risk[J]. Ecological Indicators, 2015, 48: 396-407.
|
[5] |
SUNOHARA M D, GOTTSCHALL N, CRAIOVAN E, et al. Controlling tile drainage during the growing season in Eastern Canada to reduce nitrogen, phosphorus, and bacteria loading to surface water[J]. Agricultural Water Management, 2016, 178: 159-170.
|
[6] |
JIN L, ZHANG G, TIAN H. Current state of sewage treatment in China[J]. Water Research, 2014, 66: 85-98.
|
[7] |
QIAO J F, LI W, HAN H G. Soft computing of biochemical oxygen demand using an improved T-S fuzzy neural network[J]. Chinese Journal of Chemical Engineering, 2014, 22(11): 1254-1259.
|
[8] |
SHAO W, TIAN X, WANG P. Local partial least squares based online soft sensing method for multi-output processes with adaptive process states division[J]. Chinese Journal of Chemical Engineering, 2014, 22(7): 828-836.
|
[9] |
许少鹏, 韩红桂, 乔俊飞. 基于模糊递归神经网络的污泥容积指数预测模型[J]. 化工学报, 2013, 64 (12): 4550-4556. XU S P, HAN H G, QIAO J F. Prediction of activated sludge bulking based on recurrent fuzzy neural network[J]. CIESC Journal, 2013, 64(12): 4550-4556.
|
[10] |
QIAO J F, HAN G, HAN H G. Neural network on-line modeling and controlling method for multi-variable control of wastewater treatment processes[J]. Asian Journal of Control, 2014, 16(4): 1213-1223.
|
[11] |
AKRATOS C S, PAPASPYROS J N E, TSIHRINTZIS V A. Artificial neural network use in ortho-phosphate and total phosphorus removal prediction in horizontal subsurface flow constructed wetlands[J]. Biosystems Engineering, 2009, 102(2): 190-201.
|
[12] |
LI F J, QIAO J, HAN H G, et al. A self-organizing cascade neural network with random weights for nonlinear system modeling[J]. Applied Soft Computing, 2016, 42: 184-193.
|
[13] |
CYBENKO G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control, Signals and Systems, 1989, 2(4): 303-314.
|
[14] |
TAMURA S, TATEISHI M. Capabilities of a four-layered feedforward neural network: four layers versus three[J]. IEEE Transactions on Neural Networks, 1997, 8(2): 251-255.
|
[15] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
|
[16] |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
|
[17] |
ROSA E D L, YU W. Randomized algorithms for nonlinear system identification with deep learning modification[J]. Information Sciences, 2016, 364: 197-212.
|
[18] |
LOPES N, RIBEIRO B. Towards adaptive learning with improved convergence of deep belief networks on graphics processing units[J]. Pattern Recognition, 2014, 47(1): 114-127.
|
[19] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[20] |
ROWINSKI P M, PIOTROWSKI A. Estimation of parameters of the transient storage model by means of multi-layer perceptron neural networks/estimation des paramètres du modèle de transport TSM au moyen de réseaux de neurones perceptrons multi-couches[J]. Hydrological Sciences Journal, 2008, 53(1): 165-178.
|
[21] |
PIOTROWSKI A P, NAPIORKOESKI J J. Optimizing neural networks for river flow forecasting-evolutionary computation methods versus the Levenberg-Marquardt approach[J]. Journal of Hydrology, 2011, 407(1): 12-27.
|
[22] |
ZUR R M, JIANG Y, PESCE L L, et al. Noise injection for training artificial neural networks: a comparison with weight decay and early stopping[J]. Medical Physics, 2009, 36(10): 4810-4818.
|
[23] |
JAGANNATHAN S, LEWIS F L. Identification of nonlinear dynamical systems using multilayered neural networks[J]. Automatica, 1996, 32(12): 1707-1712.
|
[24] |
HE Y L, GENG Z Q, XU Y, et al. A robust hybrid model integrating enhanced inputs based extreme learning machine with PLSR (PLSR-EIELM) and its application to intelligent measurement[J]. ISA Transactions, 2015, 58: 533-542.
|
[25] |
JANIK L J, FORRESTER S T, RAWSON A. The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2009, 97(2): 179-188.
|
[26] |
MOHAMED A, DAHL G E, HINTON G E. Acoustic modeling using deep belief networks[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 14-22.
|
[27] |
HINTON G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1800.
|
[28] |
LEROUX N, BENGIO Y. Representational power of restricted boltzmann machines and deep belief networks[J]. Neural Computation, 2008, 20(6): 1631-1649.
|
[29] |
BENGIO Y, DELALLEAU O. Justifying and generalizing contrastive divergence[J]. Neural Computation, 2009, 21(6): 1601-1621.
|
[30] |
JI N N, ZHANG J S, ZHANG C X. A sparse-response deep belief network based on rate distortion theory[J]. Pattern Recognition, 2014, 47(9): 3179-3191.
|
[31] |
MENG J E, WU S Q. A fast learning algorithm for parsimonious fuzzy neural systems[J]. Fuzzy Sets and Systems, 2002, 126(3): 337-351.
|
[32] |
KIM M H, KIM Y S, PRABU A A, et al. A systematic approach to data-driven modeling and soft sensing in a full-scale plant[J]. Water Science and Technology, 2009, 60(2): 363-370.
|
[33] |
WU S, ER M J, GAO Y. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(4): 578-594.
|
[34] |
乔俊飞, 潘广源, 韩红桂. 一种连续型深度信念网的设计与应用[J]. 自动化学报, 2015, 41(12): 2138-2146. QIAO J F, PAN G Y, HAN H G. Design and application of continuous deep belief network[J]. Acta Automatica Sinica, 2015, 41(12): 2138-2146.
|