化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3880-3891.DOI: 10.11949/0438-1157.20190479
收稿日期:
2019-05-07
修回日期:
2019-07-17
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
夏大海
作者简介:
夏大海(1984—),男,博士,副教授,基金资助:
Received:
2019-05-07
Revised:
2019-07-17
Online:
2019-10-05
Published:
2019-10-05
Contact:
Dahai XIA
摘要:
金属材料腐蚀速度的测定是评价材料在服役环境中耐蚀性的重要指标。电化学噪声技术由于其原位无损无干扰的优势,用于金属材料的腐蚀监检测的应用已有50多年的历史,可以实现对金属材料在各种环境下的腐蚀速度和腐蚀形态的评估。目前制约电化学噪声技术应用的关键科学问题之一是如何建立理论模型进而得到表征腐蚀速度的特征参数。目前腐蚀速度评价主要采用噪声电阻或谱噪声电阻来表征,但很多情况下2个参数本身缺乏严格的物理意义。本文综述了目前用于金属腐蚀速度定量分析的3种理论模型(电极过程动力学模型、等效电路模型、散粒噪声理论),并深入讨论了每种模型的优缺点,最后指出了该领域的发展方向。
中图分类号:
夏大海,宋诗哲. 金属腐蚀速度的电化学噪声检测:理论模型研究进展[J]. 化工学报, 2019, 70(10): 3880-3891.
Dahai XIA,Shizhe SONG. Development of theoretical models regarding with electrochemical noise applied in corrosion rate measurement[J]. CIESC Journal, 2019, 70(10): 3880-3891.
检测模式 | 电极系统 | 电极系统代号 | 工作电极与对电极的电极面积要求 | |
---|---|---|---|---|
ZRA模式 | 对称电极系统① | a | 无要求,两个工作电极的面积可以为任意值 S WE1=S WE2 S WE1≠S WE2 | |
b | 无要求,两个工作电极的面积可以为任意值 S WE1=S WE2 S WE1≠S WE2 | |||
非对称电极系统 | c | 有要求,WE1电极的面积要远大于对电极CE的面积 SWE1>>SCE | ||
恒电位模式 | d | 无要求 |
表1 电化学噪声测试的电极系统
Table 1 Categorization of electrode systems used in electrochemical noise measurement
检测模式 | 电极系统 | 电极系统代号 | 工作电极与对电极的电极面积要求 | |
---|---|---|---|---|
ZRA模式 | 对称电极系统① | a | 无要求,两个工作电极的面积可以为任意值 S WE1=S WE2 S WE1≠S WE2 | |
b | 无要求,两个工作电极的面积可以为任意值 S WE1=S WE2 S WE1≠S WE2 | |||
非对称电极系统 | c | 有要求,WE1电极的面积要远大于对电极CE的面积 SWE1>>SCE | ||
恒电位模式 | d | 无要求 |
1 | TyagaiV A. Faradaic noise of complex electrochemical reactions [J]. Electrochimica Acta, 1971, 16: 1647-1654. |
2 | TyagaiV A. Noise in electrochemical systems [J]. Elektrokhimiya, 1974, 10: 3-24. |
3 | TyagaiV A, Luk’yanchikovaN B. Equilibrium fluctuations in electrochemical processes[J]. Elektrokhimiya (in Russian), 1967, 3: 316-322. |
4 | IversonW P. Transient voltage changes produced in corroding metals and alloys [J]. Journal of The Electrochemical Society, 1968, 115: 617-622. |
5 | AnitaT, PujarM G, ShaikhH, et al. Assessment of stress corrosion crack initiation and propagation in AISI type 316 stainless steel by electrochemical noise technique [J]. Corrosion Science, 2006, 48: 2689-2710. |
6 | WeiY J, XiaD H, SongS Z. Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis [J]. Russian Journal of Electrochemistry, 2016, 52: 560-575. |
7 | KimS, KimH. Electrochemical noise analysis of PbSCC of Alloy 600 SG tube in caustic environments at high temperature [J]. Corrosion Science, 2009, 51: 191-196. |
8 | BidharS K, WatanabeY, TsukuiH, et al. Understanding and detecting early stages of SCC initiation in sensitized stainless steel by means of electrochemical potential transients [J]. Progresses in Fracture and Strength of Materials and Structures, 2007, 353/354/355/356/357/358: 2387-2390. |
9 | DuG, LiJ, WangW K, et al. Detection and characterization of stress-corrosion cracking on 304 stainless steel by electrochemical noise and acoustic emission techniques [J]. Corrosion Science, 2011, 53: 2918-2926. |
10 | CalabreseL, BonaccorsiL, GaleanoM, et al. Identification of damage evolution during SCC on 17-4 PH stainless steel by combining electrochemical noise and acoustic emission techniques [J]. Corrosion Science, 2015, 98: 573-584. |
11 | Arellano-PérezJ H, Ramos NegrónO J, Escobar-JiménezR F, et al. Development of a portable device for measuring the corrosion rates of metals based on electrochemical noise signals [J]. Measurement, 2018, 122: 73-81. |
12 | IannuzziM, MendezC, Avila-GrayL, et al. Determination of the critical pitting temperature of martensitic and supermartensitic stainless steels in simulated sour environments using electrochemical noise analysis [J]. Corrosion, 2010, 66: 45003-45003. |
13 | CaiC, ZhangZ, CaoF H, et al. Analysis of pitting corrosion behavior of pure Al in sodium chloride solution with the wavelet technique [J]. Journal of Electroanalytical Chemistry, 2005, 578: 143-150. |
14 | ChengY F, WilmottM, LuoJ L. Analysis of noise features at different stages during carbon steel fitting in chloride solutions [J]. Bulletin of Electrochemistry, 2000, 16: 487-492. |
15 | XiaD, MaC, SongS, et al. Detection of atmospheric corrosion of aluminum alloys by electrochemical probes: theoretical analysis and experimental tests [J]. Journal of The Electrochemical Society, 2019. 166: B1000-B1009. |
16 | XiaD H, SongS Z, ZhuR K, et al. A mechanistic study on thiosulfate-enhanced passivity degradation of Alloy 800 in chloride solutions [J]. Electrochimica Acta, 2013, 111: 510-525. |
17 | HongM, BinS, XiaoZ, et al. Dynamics of stainless steel corrosion based on the theory of phase space reconstruction and chaos [J]. Anti-Corrosion Methods and Materials, 2016, 63: 214-225. |
18 | WangY, WuG, HeL, et al. Effect of thiosulfate on metastable pitting of 304L and S32101 in chloride- and thiosulfate-containing environment [J]. Corrosion, 2016, 72: 628-635. |
19 | MaC, SongS, GaoZ, et al. Electrochemical noise monitoring of the atmospheric corrosion of steels: identifying corrosion form using wavelet analysis [J]. Corrosion Engineering, Science and Technology, 2017, 52: 432-440. |
20 | Garcia-OchoaE, Gonzalez-SanchezJ, AcunaN, et al. Analysis of the dynamics of intergranular corrosion process of sensitized 304 stainless steel using recurrence plots [J]. Journal of Applied Electrochemistry, 2009, 39: 637-645. |
21 | PujarM G, ParvathavarthiniN, DayalR K, et al. Assessment of intergranular corrosion (IGC) in 316(N) stainless steel using electrochemical noise (EN) technique [J]. Corrosion Science, 2009, 51: 1707-1713. |
22 | 赵茹, 邓伟峰, 宋诗哲. 304不锈钢管焊缝区碱性腐蚀的电化学噪声检测 [J]. 化工学报, 2008, 59(5): 1216-1222. |
ZhaoR, DengW F, SongS Z. Detection of alkaline corrosion in 304 stainless steel weld zone by electrochemical noise [J]. Journal of Chemical Industry and Engineering (China), 2008. 59: 1216-1222. | |
23 | XiaD H, SongS Z, GongW Q, et al. Detection of corrosion-induced metal release from tinplate cans using a novel electrochemical sensor and inductively coupled plasma mass spectrometer [J]. Journal of Food Engineering, 2012, 113: 11-18. |
24 | 夏大海, 宋诗哲, 王吉会, 等. 饮料金属包装实罐产品的腐蚀检测[J]. 化工学报, 2012, 63(6): 1797-1802. |
XiaD H, SongS Z, WangJ H, et al. Corrosion detection of metal cans for beverage packaging [J]. CIESC Journal, 2012, 63: 1797-1802. | |
25 | 夏大海, 王吉会, 蒋宇轩, 等. 环氧酚醛/镀锡薄钢板体系在功能饮料中的腐蚀行为[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(6): 503-509. |
XiaD H, WangJ H, JiangY X, et al. Corrosion behavior of novolac epoxy coated tinplate in energy drink [J]. Journal of Tianjin University (Science and Technology), 2013, 46(6): 503-509. | |
26 | ZhengX, XiaD, WangH, et al. Detection of the corrosion degree of beverage cans using a novel electrochemical sensor [J]. Anti-Corrosion Methods and Materials, 2013, 60: 153-159. |
27 | ZhouC, WangJ, SongS, et al. Degradation mechanism of lacquered tinplate in energy drink by in-situ EIS and EN [J]. Journal Wuhan University of Technology(Materials Science Edition), 2013, 28: 367-372. |
28 | MengF, LiuL, LiY, et al. Studies on electrochemical noise analysis of an epoxy coating/metal system under marine alternating hydrostatic pressure by pattern recognition method [J]. Progress in Organic Coatings, 2017, 105: 81-91. |
29 | MengF, LiuL, CuiY, et al. A novel design of electrochemical noise configuration based on embedded-electrodes for in-situ evaluation of epoxy coating under marine alternating hydrostatic pressure [J]. 2019, 131: 346-356. |
30 | JamaliS S, MillsD J. A critical review of electrochemical noise measurement as a tool for evaluation of organic coatings [J]. Progress in Organic Coatings, 2016, 95: 26-37. |
31 | JamaliS S, MillsD J, SykesJ M. Measuring electrochemical noise of a single working electrode for assessing corrosion resistance of polymer coated metals [J]. Progress in Organic Coatings, 2014, 77: 733-741. |
32 | YiC, ZhuB. Corrosion inhibition effect of 2-hydroxy phosphonoacetic acid and pyrophosfate on Q235 steel. Electrochemical noise and EIS analysis [J]. International Journal of Electrochemical Science, 2019, 14: 6759-6772. |
33 | MarkhaliB P, NaderiR, MahdavianM. Characterization of corrosion inhibition performance of azole compounds through power spectral density of electrochemical noise [J]. Journal of Electroanalytical Chemistry, 2014, 714/715: 56-62. |
34 | LuY Z, SongS Z, YinL H. Corrosion electrochemical behavior of brass tubes in circulating cooling seawater [J]. Transactions of Nonferrous Metals Society of China, 2005, 15: 619-625. |
35 | 宋诗哲, 尹立辉, 武杰, 等. 模拟循环冷却系统黄铜管的腐蚀电化学[J]. 化工学报, 2005, 56(1): 121-125. |
SongS Z, YinL H, WuJ, et al. corrosion electrochemistry of brass tube in simulated circulating cooling system [J]. Journal of Chemical Industry and Engineering (China), 2005, 56(1): 121-125. | |
36 | HomborgA M, Leon MoralesC F, TingaT, et al. Detection of microbiologically influenced corrosion by electrochemical noise transients [J]. Electrochimica Acta, 2014, 136: 223-232. |
37 | ChandrasatheeshC, JayapriyaJ, GeorgeR P, et al. Detection and analysis of microbiologically influenced corrosion of 316 L stainless steel with electrochemical noise technique [J]. Engineering Failure Analysis, 2014, 42: 133-142. |
38 | 夏大海, 马超, 宋诗哲. Cl-污染大气环境下T91钢孔蚀萌生的电化学噪声检测[J]. 化工学报, 2019, 70(7): 2668-2674. |
XiaD H, MaC, SongS Z. Pitting initiation of T91 steel in Cl- polluted atmosphere detected by electrochemical noise [J]. CIESC Journal, 2019, 70(7): 2668-2674. | |
39 | 夏大海, 宋诗哲, 李健, 等. 新型腐蚀电化学传感器在金属材料大气腐蚀现场检测中的应用[J]. 腐蚀科学与防护技术, 2017, 29(5): 581-585. |
XiaD H, SongS Z, LiJ, et al. On-line monitoring atmospheric corrosion of metal materials by using a novel corrosion electrochemical sensor [J]. Corrosion Science and Protection Technology, 2017, 29(5): 581-585. | |
40 | Ramos-NegrónO J, Arellano-PérezJ H, Escobar-JiménezR F, et al. Electrochemical noise analysis to identify the corrosion type using the Stockwell transform and the Shannon energy [J]. Journal of Electroanalytical Chemistry, 2019, 836: 50-61. |
41 | MonrrabalG, HuetF, BautistaA. Electrochemical noise measurements on stainless steel using a gelled electrolyte [J]. Corrosion Science, 2019, 148: 48-56. |
42 | MaC, WangZ, BehnamianY, et al. Measuring atmospheric corrosion with electrochemical noise: a review of contemporary methods [J]. Measurement, 2019, 138: 54-79. |
43 | BahramiM J, HosseiniS M A, ShahidiM. Comparison of electrochemical current noise signals arising from symmetrical and asymmetrical electrodes made of Al alloys at different pH values using statistical and wavelet analysis. Part II: Alkaline solutions [J]. Electrochimica Acta, 2014, 148: 249-260. |
44 | BahramiM J, ShahidiM, HosseiniS M A. Comparison of electrochemical current noise signals arising from symmetrical and asymmetrical electrodes made of Al alloys at different pH values using statistical and wavelet analysis(Ⅰ): Neutral and acidic solutions [J]. Electrochimica Acta, 2014, 148: 127-144. |
45 | PistoriusP C. Design aspects of electrochemical noise measurements for uncoated metals: electrode size and sampling rate [J]. Corrosion, 1997, 53: 273-283. |
46 | XiaD H, SongS Z, BehnamianY. Detection of corrosion degradation using electrochemical noise (EN): review of signal processing methods for identifying corrosion forms [J]. Corrosion Engineering, Science and Technology, 2016, 51: 527-544. |
47 | 夏大海, 宋诗哲, 王吉会. 基于混沌理论的电化学噪声谱数据解析及其在局部腐蚀检测中的应用 [J]. 化工学报, 2018, 69(4): 1569-1577. |
XiaD H, SongS Z, WangJ H. Chaos analysis of electrochemical noise and its application in localized corrosion detection [J]. CIESC Journal, 2018, 69(4): 1569-1577. | |
48 | XiaD H, ShiJ B, GongW Q, et al. The significance of correlation dimension obtained from electrochemical noise [J]. Electrochemistry, 2012, 80: 907-912. |
49 | XiaD H, SongS Z, WangJ H, et al. Determination of corrosion types from electrochemical noise by phase space reconstruction theory [J]. Electrochemistry Communications, 2012, 15: 88-92. |
50 | HeiM, XiaD H, SongS Z, et al. Sensing atmospheric corrosion of carbon steel and low-alloy steel using the electrochemical noise technique: effects of weather conditions [J]. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53(6): 1100-1113. |
51 | CottisR A. Interpretation of electrochemical noise data [J]. Corrosion, 2001, 57: 265-285. |
52 | CottisR A. Sources of electrochemical noise in corroding systems [J]. Russian Journal of Electrochemistry, 2006, 42: 497-505. |
53 | HomborgA M, TingaT, van WestingE, et al. A critical appraisal of the interpretation of electrochemical noise for corrosion studies [J]. Corrosion, 2014, 70: 971-987. |
54 | 张涛, 杨延格, 邵亚薇, 等.电化学噪声分析方法的研究进展[J]. 中国腐蚀与防护学报, 2014, 34(1) : 1-18. |
ZhangT, YangY G, ShaoY W, et al. Advances of the analysis methodology for electrochemical noise [J]. Journal of Chinese Society for Corrosion and protection, 2014. 34(1): 1-18. | |
55 | 董泽华, 郭兴蓬, 郑家燊. 电化学噪声的分析方法 [J]. 材料保护, 2001, 34: 20-23. |
DongZ H, GuoX P, ZhengJ S. Review on electrochemical noise analysis methods[J]. Materials Protection, 2001, 34: 20-23. | |
56 | ChenJ F, BogaertsW F. The physical meaning of noise resistance [J]. Corrosion Science, 1995. 37: 1839-1842. |
57 | ChenJ F, BogaertsW F. Electrochemical emission spectroscopy for monitoring uniform and localized corrosion [J]. Corrosion, 1996, 52: 753-759. |
58 | CottisR A. The significance of electrochemical noise measurements on asymmetric electrodes [J]. Electrochimica Acta, 2007, 52: 7585-7589. |
59 | BaeckmannW, SchwenkW, PrinzW. Handbook of Cathodic Corrosion Protection[M]. Elsevier, 1997. |
60 | CurioniM, SkeldonP, ThompsonG E. Reliability of the estimation of polarization resistance of corroding electrodes by electrochemical noise analysis: effects of electrode asymmetry [J]. Electrochimica Acta, 2013, 105: 642-653. |
61 | BertocciU, GabrielliC, HuetF, et al. Noise resistance applied to corrosion measurements(Ⅰ): Theoretical analysis [J]. Journal of The Electrochemical Society, 1997, 144: 31-37. |
62 | BautistaA, BertocciU, HuetF. Noise resistance applied to corrosion measurements (Ⅴ): Influence of electrode asymmetry [J]. Journal of The Electrochemical Society, 2001, 148: B412-B418. |
63 | AballeA, HuetF. Noise resistance applied to corrosion measurements(Ⅵ): Partition of the current fluctuations between the electrodes [J]. Journal of The Electrochemical Society, 2002, 149: B89-B96. |
64 | BertocciU, GabrielliC, HuetF, et al. Noise resistance applied to corrosion measurements(Ⅱ): Experimental tests [J]. Journal of The Electrochemical Society, 1997, 144: 37-43. |
65 | BertocciU, HuetF. Noise resistance applied to corrosion measurements(Ⅲ): Influence of the instrumental noise on the measurements [J]. Journal of The Electrochemical Society, 1997, 144: 2786-2793. |
66 | BautistaA, HuetF. Noise resistance applied to corrosion measurements(Ⅳ): Asymmetric coated electrodes [J]. Journal of The Electrochemical Society, 1999, 146: 1730-1736. |
67 | KimJ J. On the determination of electrochemical noise resistance [J]. Metals and Materials International, 2009, 15: 279-283. |
68 | TorresA, UruchurtuJ, Gonzalez-RodriguezJ G, et al. Correlation between electrochemical noise resistance and noise impedance for mild and stainless steel as a function of pH [J]. Corrosion, 2007, 63: 866-871. |
69 | CurioniM, CottisR, DiNatale M, et al. Corrosion of dissimilar alloys: electrochemical noise [J]. 2011, 56: 6318-6329. |
70 | Sanchez-AmayaJ M, CottisR A, BotanaF J. Shot noise and statistical parameters for the estimation of corrosion mechanisms [J]. Corrosion Science, 2005, 47: 3280-3299. |
71 | HeynA, GöllnerJ J M. Analysis and monitoring of corrosion using electrochemical noise—5 th Part [J]. 2013, 8: 663-663. |
72 | 胡欢欢, 邓培昌, 胡杰珍, 等. 基于电化学噪声技术的碳钢大气腐蚀行为监测方法[J]. 装备环境工程, 2017, 14(9): 68-72. |
HuH H, DengP C, HuJ Z, et al. Monitoring method of carbon steel atmosphere corrosion behavior based on electrochemical noise technology[J]. Equipment Environmental Engineering, 2017, 14(9): 68-72. | |
73 | XiaD H, MaC, BehnamianY, et al. Reliability of the estimation of uniform corrosion rate of Q235B steel under simulated marine atmospheric conditions by electrochemical noise (EN) analyses [J]. Measurement, 2019. 148: 1-14 |
74 | XiaD H, WangJ, WuZ, et al. Sensing corrosion within an artificial defect in organic coating using SECM [J]. Sensors & Actuators: B. Chemical, 2019, 280: 235-242. |
75 | AstafevE. Comparing the method and hardware for electrochemical impedance with the method of measuring and analyzing electrochemical noise [J]. Russian Journal of Electrochemistry, 2018. 54: 1022-1030. |
76 |
AstafevE, UksheA. Peculiarities of hardware for electrochemical noise measurement in chemical power sources [J]. IEEE Transactions on Instrumentation and Measurement, 2019, DOI: 10.1109/TIM.2018.2889232.
DOI |
77 | AstafevE A. Software and instrumentational methods of enhancing the resolution in electrochemical noise measurements [J]. Russian Journal of Electrochemistry, 2018. 54: 1031-1044. |
[1] | 姜家豪, 黄笑乐, 任纪云, 朱正荣, 邓磊, 车得福. 生物炭吸附溶液中Pb2+的定性及定量研究[J]. 化工学报, 2023, 74(2): 830-842. |
[2] | 田锐, 王沛力, 吕超, 段雪. 有机-无机复合材料中无机相分散度三维荧光分析[J]. 化工学报, 2021, 72(6): 3002-3013. |
[3] | 李伟斌, 宋超, 易贤, 马洪林, 杜雁霞. 动态结冰孔隙结构三维建模方法[J]. 化工学报, 2020, 71(3): 1009-1017. |
[4] | 夏大海, 马超, 宋诗哲. Cl-污染大气环境下T91钢孔蚀萌生的电化学噪声检测[J]. 化工学报, 2019, 70(7): 2668-2674. |
[5] | 夏大海, 宋诗哲, 王吉会. 基于混沌理论的电化学噪声谱数据解析及其在局部腐蚀检测中的应用[J]. 化工学报, 2018, 69(4): 1569-1577. |
[6] | 王阳, 龚勋, 冷尔唯, 张彪, 何剑青, 徐明厚. 基于苯甲酰化的纤维素热解过程中典型脱水糖的定量分析[J]. 化工学报, 2016, 67(6): 2519-2524. |
[7] | 陈曼, 赵嵩, 曾爱武, 于海路. 界面传质中Rayleigh对流的定量分析[J]. 化工学报, 2016, 67(11): 4566-4573. |
[8] | 沈文龙, 李嘉旭, 杨颖, 李平, 于建国. 基于沸石ZSM-5的CH4/N2/CO2二元体系吸附平衡[J]. 化工学报, 2014, 65(9): 3490-3498. |
[9] | 沈文龙, 李嘉旭, 杨颖, 李平, 于建国. 基于沸石ZSM-5的CH4/N2/CO2二元体系吸附平衡研究[J]. 化工学报, 2014, 65(9): 0-0. |
[10] | 王肖祎, 仲兆平, 王春华. 流化床内生物质石英砂双组分混合流动混沌递归分析[J]. 化工学报, 2014, 65(3): 813-819. |
[11] | 柯道友, 毕景良, 李雪芳. 氢气泄漏过程的理论模型计算及CFD模拟[J]. 化工学报, 2013, 64(9): 3088-3095. |
[12] | 赵平, 张月萍, 任鹏. AB-8大孔树脂对葡萄籽原花青素的吸附过程[J]. 化工学报, 2013, 64(3): 980-985. |
[13] | 李津蓉1,2,戴连奎1,阮华1. 基于谱峰分解的拉曼光谱定量分析方法[J]. 化工学报, 2012, 63(7): 2128-2135. |
[14] | 夏大海,宋诗哲,王吉会,毕慧超. 饮料金属包装实罐产品的腐蚀检测[J]. 化工学报, 2012, 63(6): 1797-1802. |
[15] | 陈金庆, 朱顺泉, 王保国, 杨基础. 全钒液流电池开路电压模型 [J]. 化工学报, 2009, 60(1): 211-215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||