化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3002-3013.DOI: 10.11949/0438-1157.20201620
收稿日期:
2020-11-10
修回日期:
2021-01-28
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
田锐
作者简介:
田锐(1988—),女,博士,副教授,基金资助:
TIAN Rui(),WANG Peili,LYU Chao,DUAN Xue
Received:
2020-11-10
Revised:
2021-01-28
Online:
2021-06-05
Published:
2021-06-05
Contact:
TIAN Rui
摘要:
有机-无机复合材料因其优异的性能广泛应用于多个行业及领域,无机相分散度是决定复合材料质量、保证产品性能发挥的重要因素。因此,对复合材料中无机相分散度的有效评价是构筑高品质复合材料的关键步骤。本文介绍了有机-无机复合材料中无机相分散度的传统表征方法及亟待解决的问题。针对这些问题,综述了三维荧光成像法对有机-无机复合材料中无机相分散度的可视化评价研究进展:通过前染修饰、后染定位两种染色技术实现对无机相的染色识别;基于三维成像技术对复合材料中无机相进行定位及微观形貌分析;对无机相在介观尺度、三维空间的分散度进行定性及定量分析。该方法不仅适用于对复合材料制备工艺的筛选,也可用于对成品材料的现场无损分析。最后总结并展望了复合材料结构可视化的未来研究方向。
中图分类号:
田锐, 王沛力, 吕超, 段雪. 有机-无机复合材料中无机相分散度三维荧光分析[J]. 化工学报, 2021, 72(6): 3002-3013.
TIAN Rui, WANG Peili, LYU Chao, DUAN Xue. Three-dimensional fluorescent evaluation on dispersion state for inorganic nanofiller in organic-inorganic composites[J]. CIESC Journal, 2021, 72(6): 3002-3013.
41 | Zhou Q Y, Fan C, Li C, et al. AIE-based universal super-resolution imaging for inorganic and organic nanostructures[J]. Materials Horizons, 2018, 5(3): 474-479. |
42 | Guggenheim E J, Lynch I, Rappoport J Z. Imaging in focus: reflected light imaging: techniques and applications[J]. The International Journal of Biochemistry & Cell Biology, 2017, 83: 65-70. |
43 | Peng H Q, Liu B, Wei P F, et al. Visualizing the initial step of self-assembly and the phase transition by stereogenic amphiphiles with aggregation-induced emission[J]. ACS Nano, 2019, 13(1): 839-846. |
44 | Mao B Y, Calatayud D G, Mirabello V, et al. Fluorescence-lifetime imaging and super-resolution microscopies shed light on the directed- and self-assembly of functional porphyrins onto carbon nanotubes and flat surfaces[J]. Chemistry - A European Journal, 2017, 23(41): 9772-9789. |
45 | Claus T K, Richter B, Hahn V, et al. Simultaneous dual encoding of three-dimensional structures by light-induced modular ligation[J]. Angewandte Chemie International Edition, 2016, 55(11): 3817-3822. |
46 | 任静, 谭玲, 赵宇飞, 等. 超薄二维材料光/电催化CO2还原的最新进展[J]. 化工学报, 2021, 72(1): 398-424. |
Ren J, Tan L, Zhao Y F, et al. Latest development of ultrathin two-dimensional materials for photocatalytic and electrocatalytic CO2 reduction[J]. CIESC Journal, 2021, 72(1): 398-424. | |
47 | Suter J L, Groen D, Coveney P V. Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties[J]. Advanced Materials, 2015, 27(6): 966-984. |
48 | Guan W J, Zhou W J, Lu C, et al. Synthesis and design of aggregation-induced emission surfactants: direct observation of micelle transitions and microemulsion droplets[J]. Angewandte Chemie, 2015, 127(50): 15375-15379. |
49 | Zhong J P, Guan W J, Lu C. Surfactant-assisted algal flocculation via aggregation-induced emission with an ultralow critical micelle concentration[J]. Green Chemistry, 2018, 20(10): 2290-2298. |
50 | Zhang L J, Jiao L L, Zhong J P, et al. Lighting up the interactions between bacteria and surfactants with aggregation-induced emission characteristics[J]. Materials Chemistry Frontiers, 2017, 1(9): 1829-1835. |
51 | Guan W, Wang S, Lu C, et al. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites[J]. Nature Communications, 2016, 7: 11811. |
52 | Yin T, Fu Q G, Zhou L, et al. Powdered nitrile rubber @ silicon dioxide capsule as the wear modifier of phenolic resin composites under dry friction[J]. Tribology International, 2020, 151: 106517. |
53 | Niemczyk A, Dziubek K, Czaja K, et al. Study and evaluation of dispersion of polyhedral oligomeric silsesquioxane and silica filler in polypropylene composites[J]. Polymer Composites, 2019, 40(4): 1354-1364. |
54 | Suzuki N, Zakaria M B, Chiang Y D, et al. Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers[J]. Physical Chemistry Chemical Physics, 2012, 14(20): 7427-7432. |
1 | Sanchez C, Julián B, Belleville P, et al. Applications of hybrid organic-inorganic nanocomposites[J]. Journal of Materials Chemistry, 2005, 15(35/36): 3559. |
2 | Lin Y J, Wang J R, Evans D G, et al. Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin[J]. Journal of Physics and Chemistry of Solids, 2006, 67(5/6): 998-1001. |
3 | 欧育湘. 阻燃剂——制造、性能及应用[M]. 北京: 兵器工业出版社, 1997. |
Ou Y X. Flame Retardant: Manufacture, Properties and Applications[M]. Beijing: Weapons Ind. Press, 1997. | |
4 | 张靠民, 孙金鹏, 李如燕, 等. 有机/无机填料混杂增强木塑复合材料制备与性能[J]. 塑料工业, 2020, 48(2): 158-163. |
Zhang K M, Sun J P, Li R Y, et al. Preparation and properties of organic/inorganic filler reinforced hybrid wood-plastic composites[J]. China Plastics Industry, 2020, 48(2): 158-163. | |
5 | Lu Q L, Cai Z H, Wang S Q, et al. Controlled construction of nanostructured organic-inorganic hybrid material induced by nanocellulose[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8456-8463. |
6 | 田锐, 卫敏, 段雪. 基于LDHs荧光材料的组装及二维限域效应研究[J]. 中国科学: 化学, 2017, 47(4): 420-430. |
Tian R, Wei M, Duan X. Assembly of LDHs-based fluorescent materials and investigations on their two-dimensional confinement effect[J]. Scientia Sinica (Chimica), 2017, 47(4): 420-430. | |
7 | Laipan M W, Yu J F, Zhu R L, et al. Functionalized layered double hydroxides for innovative applications[J]. Materials Horizons, 2020, 7(3): 715-745. |
8 | Gao R, Yan D P, Evans D G, et al. Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications[J]. Nano Research, 2017, 10(10): 3606-3617. |
9 | Gao R, Yan D. Layered host-guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface[J]. Chemical Science, 2017, 8(1): 590-599. |
10 | Liu W D, Xu S M, Guan S Y, et al. Confined synthesis of carbon nitride in a layered host matrix with unprecedented solid-state quantum yield and stability[J]. Advanced Materials, 2018, 30(2): 1704376. |
11 | Ma X D, An Z, Song H Y, et al. Atomic Pt-catalyzed heterogeneous anti-Markovnikov C—N formation: Pt10 activating N—H for Pt1δ+-activated C̿ C attack[J]. Journal of the American Chemical Society, 2020, 142(19): 9017-9027. |
12 | Tan L, Xu S M, Wang Z L, et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm[J]. Angewandte Chemie International Edition, 2019, 58(34): 11860-11867. |
13 | 黄年华, 李治华, 王维, 等. PVC/LDH纳米复合材料的制备及形貌[J]. 武汉理工大学学报, 2009, 31(13): 26-29. |
Huang N H, Li Z H, Wang W, et al. Preparation and morphology of polyvinyl chloride/LDH nanocomposites[J]. Journal of Wuhan University of Technology, 2009, 31(13): 26-29. | |
14 | 韩志东, 王玥, 赖文伟, 等. 聚乙烯/水滑石复合材料的结构及其热降解行为[J]. 哈尔滨理工大学学报, 2013, 18(5): 1-5. |
Han Z D, Wang Y, Lai W W, et al. Structure and thermal degradation behaviors of PE / LDH composites[J]. Journal of Harbin University of Science and Technology, 2013, 18(5): 1-5. | |
15 | Wu H, Li L, Yu J Y, et al. Effect of layered double hydroxides on ultraviolet aging properties of different bitumens[J]. Construction and Building Materials, 2016, 111: 565-570. |
16 | 安文, 马建中, 徐群娜. 聚合物基水滑石-石墨烯复合阻燃材料的研究进展[J]. 材料导报, 2019, 33(S2): 604-608. |
An W, Ma J Z, Xu Q N. Research progress of polymer-based hydrotalcite-graphene flame retardant composites[J]. Materials Reports, 2019, 33(S2): 604-608. | |
17 | Huang Y F, Feng Z G, Zhang H L, et al. Effect of layered double hydroxides (LDHs) on aging properties of bitumen[J]. Journal of Testing and Evaluation, 2012, 40(5): 20120050. |
18 | Dou Y B, Pan T, Xu S M, et al. Transparent, ultrahigh-gas-barrier films with a brick-mortar-sand structure[J]. Angewandte Chemie International Edition, 2015, 54(33): 9673-9678. |
19 | Dou Y B, Xu S M, Liu X X, et al. Transparent, flexible films based on layered double hydroxide/cellulose acetate with excellent oxygen barrier property[J]. Advanced Functional Materials, 2014, 24(4): 514-521. |
20 | Shi W, Lin Y, Zhang S, et al. Study on UV-shielding mechanism of layered double hydroxide materials[J]. Physical Chemistry Chemical Physics, 2013, 15(41): 18217-18222. |
21 | Wang G R, Xu S M, Xia C H, et al. Fabrication of host–guest UV-blocking materials by intercalation of fluorescent anions into layered double hydroxides[J]. RSC Advances, 2015, 5(30): 23708-23714. |
22 | Sun C Z, Wen S P, Ma H W, et al. Improvement of silica dispersion in solution polymerized styrene-butadiene rubber via introducing amino functional groups[J]. Industrial & Engineering Chemistry Research, 2019, 58(3): 1454-1461. |
23 | Zhao H B, Zhao G Q, Turng L S, et al. Enhancing nanofiller dispersion through prefoaming and its effect on the microstructure of microcellular injection molded polylactic acid/clay nanocomposites[J]. Industrial & Engineering Chemistry Research, 2015, 54(28): 7122-7130. |
24 | Bieligmeyer M, Taheri S M, German I, et al. Completely miscible polyethylene nanocomposites[J]. Journal of the American Chemical Society, 2012, 134(44): 18157-18160. |
25 | Vasileiou A A, Kontopoulou M, Docoslis A. A noncovalent compatibilization approach to improve the filler dispersion and properties of polyethylene/graphene composites[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1916-1925. |
26 | MacKay M E. General strategies for nanoparticle dispersion[J]. Science, 2006, 311(5768): 1740-1743. |
27 | Mangal R, Srivastava S, Archer L A. Phase stability and dynamics of entangled polymer-nanoparticle composites[J]. Nature Communications, 2015, 6: 7198. |
28 | Podsiadlo P, Kaushik A K, Arruda E M, et al. Ultrastrong and stiff layered polymer nanocomposites[J]. Science, 2007, 318(5847): 80-83. |
29 | Jouault N, Zhao D, Kumar S K. Role of casting solvent on nanoparticle dispersion in polymer nanocomposites[J]. Macromolecules, 2014, 47(15): 5246-5255. |
30 | Alam R, Mobin M, Aslam J. Investigation of anti-corrosive properties of poly(aniline-co-2-pyridylamine-co-2, 3-xylidine) and its nanocomposite poly(aniline-co-2-pyridylamine-co-2, 3-xylidine)/ZnO on mild steel in 0.1 M HCl[J]. Applied Surface Science, 2016, 368: 360-367. |
31 | Liu Y B, Liu J, Tian Y, et al. Robust organic-inorganic composite films with multifunctional properties of superhydrophobicity, self-healing, and drag reduction[J]. Industrial & Engineering Chemistry Research, 2019, 58(11): 4468-4478. |
32 | Konopka K, Łada P, Dutkiewicz J, et al. SEM and TEM analysis of composite of ZrO2-Ti system[J]. Composite Interfaces, 2018, 25(12): 1091-1099. |
33 | Sayagués M J, Avilés M A, Córdoba J M, et al. Microstructural characterization of ceramic-intermetallic composites using TEM related techniques[J]. Journal of the European Ceramic Society, 2010, 30(8): 1765-1774. |
34 | Vermogen A, Masenelli-Varlot K, Séguéla R, et al. Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites[J]. Macromolecules, 2005, 38(23): 9661-9669. |
35 | Zeng S J, Kang M, Chen K X, et al. Visual research filler network structure in polymer composites and its structure-activity relationship by fluorescent labeling and LSCM[J]. Polymer Testing, 2020, 90: 106749. |
36 | Chandran S, Begam N, Padmanabhan V, et al. Confinement enhances dispersion in nanoparticle–polymer blend films[J]. Nature Communications, 2014, 5: 3697. |
37 | Ameloot R, Vermoortele F, Hofkens J, et al. Three-dimensional visualization of defects formed during the synthesis of metal-organic frameworks: a fluorescence microscopy study[J]. Angewandte Chemie International Edition, 2013, 52(1): 401-405. |
38 | Kim Y, Yeom B, Arteaga O, et al. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale[J]. Nature Materials, 2016, 15(4): 461-468. |
39 | Krmpot A J, Nikolić S N, Oasa S, et al. Functional fluorescence microscopy imaging: quantitative scanning-free confocal fluorescence microscopy for the characterization of fast dynamic processes in live cells[J]. Analytical Chemistry, 2019, 91(17): 11129-11137. |
40 | Hao Y N, Zheng A Q, Guo T T, et al. Glutathione triggered degradation of polydopamine to facilitate controlled drug release for synergic combinational cancer treatment[J]. Journal of Materials Chemistry B, 2019, 7(43): 6742-6750. |
55 | Feng Z, Zhong J, Guan W, et al. Three-dimensional direct visualization of silica dispersion in polymer-based composites[J]. The Analyst, 2018, 143(9): 2090-2095. |
56 | Tan X H, Wang Y, Armitage B A, et al. Label-free molecular beacons for biomolecular detection[J]. Analytical Chemistry, 2014, 86(21): 10864-10869. |
57 | Xu Q F, Zhu G C, Zhang C Y. Homogeneous bioluminescence detection of biomolecules using target-triggered hybridization chain reaction-mediated ligation without luciferase label[J]. Analytical Chemistry, 2013, 85(14): 6915-6921. |
58 | Herner A, Marjanovic J, Lewandowski T M, et al. 2-Aryl-5-carboxytetrazole as a new photoaffinity label for drug target identification[J]. Journal of the American Chemical Society, 2016, 138(44): 14609-14615. |
59 | Li Z H, Dong K, Huang S, et al. A smart nanoassembly for multistage targeted drug delivery and magnetic resonance imaging[J]. Advanced Functional Materials, 2014, 24(23): 3612-3620. |
60 | Cheng L, Wang C, Ma X X, et al. Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control[J]. Advanced Functional Materials, 2013, 23(3): 272-280. |
61 | Tian R, Zhong J, Lu C, et al. Hydroxyl-triggered fluorescence for location of inorganic materials in polymer-matrix composites[J]. Chemical Science, 2018, 9(1): 218-222. |
62 | Wang Q, O'Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7): 4124-4155. |
63 | Schmidt D F, Giannelis E P. Silicate dispersion and mechanical reinforcement in polysiloxane/layered silicate nanocomposites[J]. Chemistry of Materials, 2010, 22(1): 167-174. |
64 | Kubo Y J, Nishiyabu R, James T D. Hierarchical supramolecules and organization using boronic acid building blocks[J]. ChemInform, 2015, 46(16): 2005-2020. |
65 | Zaccardi F, Santonicola M G, Laurenzi S. Quantitative assessment of nanofiller dispersion based on grayscale image analysis: a case study on epoxy/carbon nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 302-310. |
66 | Pfeifer S, Bandaru P R. A methodology for quantitatively characterizing the dispersion of nanostructures in polymers and composites[J]. Materials Research Letters, 2014, 2(3): 166-175. |
67 | Khare H S, Burris D L. A quantitative method for measuring nanocomposite dispersion[J]. Polymer, 2010, 51(3): 719-729. |
68 | Akiyama Y, Shikagawa H, Kanayama N, et al. Modulation of interparticle distance in discrete gold nanoparticle dimers and trimers by DNA single-base pairing[J]. Small, 2015, 11(26): 3153-3161. |
69 | Frankamp B L, Boal A K, Rotello V M. Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers[J]. Journal of the American Chemical Society, 2002, 124(51): 15146-15147. |
70 | Lv X, Kang M, Yuan L, et al. Quantitative evaluation of fillers dispersion state in CaCO3/polypropylene composites through visualization and fractal analysis[J]. Polymer Composites, 2020, 41(4): 1605-1613. |
71 | Taguet A, Cassagnau P, Lopez-Cuesta J M. Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends[J]. Progress in Polymer Science, 2014, 39(8): 1526-1563. |
72 | Balzer C, Armstrong M, Shan B H, et al. Modeling nanoparticle dispersion in electrospun nanofibers[J]. Langmuir, 2018, 34(4): 1340-1346. |
73 | Zhong J P, Li Z Q, Guan W J, et al. Cation-π interaction triggered-fluorescence of clay fillers in polymer composites for quantification of three-dimensional macrodispersion[J]. Analytical Chemistry, 2017, 89(22): 12472-12479. |
74 | Zhang Z K, Feng Z M, Tian R, et al. Novel fluorescence method for determination of spatial interparticle distance in polymer nanocomposites[J]. Analytical Chemistry, 2020, 92(11): 7794-7799. |
75 | Akamatsu K, Shinkai H, Ikeda S, et al. Controlling interparticle spacing among metal nanoparticles through metal-catalyzed decomposition of surrounding polymer matrix[J]. Journal of the American Chemical Society, 2005, 127(22): 7980-7981. |
76 | Bagheri R, Pearson R A. Role of particle cavitation in rubber-toughened epoxies(Ⅱ): Inter-particle distance[J]. Polymer, 2000, 41(1): 269-276. |
[1] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[2] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[3] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[4] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[5] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[6] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[7] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[8] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[9] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[10] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[11] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[12] | 白天昊, 王晓雯, 杨梦滋, 段新伟, 米杰, 武蒙蒙. 类水滑石衍生锌基氧化物高温煤气脱硫过程中COS释放行为及其抑制研究[J]. 化工学报, 2023, 74(4): 1772-1780. |
[13] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[14] | 徐东, 田杜, 陈龙, 张禹, 尤庆亮, 胡成龙, 陈韶云, 陈建. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389. |
[15] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 418
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 493
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||