化工学报 ›› 2019, Vol. 70 ›› Issue (10): 4012-4020.DOI: 10.11949/0438-1157.20190612
白翔1(),郭润1,曾招朋2,陈振涛1(),张霖宙1,许志明1,徐春明1,赵锁奇1()
收稿日期:
2019-06-02
修回日期:
2019-09-18
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
陈振涛,赵锁奇
作者简介:
白翔(1981—),女,博士研究生,基金资助:
Xiang BAI1(),Run GUO1,Zhaopeng ZENG2,Zhentao CHEN1(),Linzhou ZHANG1,Zhiming XU1,Chunming XU1,Suoqi ZHAO1()
Received:
2019-06-02
Revised:
2019-09-18
Online:
2019-10-05
Published:
2019-10-05
Contact:
Zhentao CHEN,Suoqi ZHAO
摘要:
氢气是油品加氢工艺中重要的反应组分,其在石油馏分中的溶解性能是影响加氢工艺过程的关键因素。重油中氢气溶解度的数据较为匮乏,尤其是重油中沥青质组分对氢气溶解度的影响并未受到关注。采用高压搅拌釜对氢气在四种重油原料中的溶解度进行系统研究,获得了氢气在重油中溶解性能随温度和压力的变化规律,并考察了沥青质含量对氢气溶解性能的影响。结果表明,氢气在相同重油原料中的溶解度随温度和压力的升高而增大,并且在较高温度或压力条件下,压力或温度变化对氢气溶解性能的影响更加显著。利用Aspen Plus中的Flash模块结合PR状态方程建立氢气溶解度计算模型,并进行高温条件氢气溶解度的预测,表明常规加氢条件下加拿大油砂沥青减渣中氢气溶解度与氢耗之间的矛盾极为尖锐,其脱沥青油的氢气溶解性能得到较大改善,胶质和沥青质的脱除缓解了氢气溶解和氢耗之间的矛盾。
中图分类号:
白翔, 郭润, 曾招朋, 陈振涛, 张霖宙, 许志明, 徐春明, 赵锁奇. 沥青质含量对重油中氢气溶解度影响的研究[J]. 化工学报, 2019, 70(10): 4012-4020.
Xiang BAI, Run GUO, Zhaopeng ZENG, Zhentao CHEN, Linzhou ZHANG, Zhiming XU, Chunming XU, Suoqi ZHAO. Effect of asphaltene contents on hydrogen solubility in heavy oils[J]. CIESC Journal, 2019, 70(10): 4012-4020.
油样 | 密度(20℃)/ (g/ml) | 残炭/% | 黏度(100℃)/ (mPa·s) | 平均 分子量 | C/% (质量) | H/% (质量) | H/C 原子比 | N/% (质量) | S/% (质量) | Ni/(μg/g) | V/(μg/g) |
---|---|---|---|---|---|---|---|---|---|---|---|
减压渣油VR | 1.054 | 24.94 | 26480 | 1147 | 81.77 | 9.84 | 1.44 | 0.78 | 5.8 | 120 | 331 |
脱沥青油DO | 1.0006 | 10.5 | 454 | 648 | 82.7 | 10.6 | 1.54 | — | — | — | — |
表1 减压渣油和脱沥青油的性质
Table 1 Properties of vacuum residue and deasphalted oil
油样 | 密度(20℃)/ (g/ml) | 残炭/% | 黏度(100℃)/ (mPa·s) | 平均 分子量 | C/% (质量) | H/% (质量) | H/C 原子比 | N/% (质量) | S/% (质量) | Ni/(μg/g) | V/(μg/g) |
---|---|---|---|---|---|---|---|---|---|---|---|
减压渣油VR | 1.054 | 24.94 | 26480 | 1147 | 81.77 | 9.84 | 1.44 | 0.78 | 5.8 | 120 | 331 |
脱沥青油DO | 1.0006 | 10.5 | 454 | 648 | 82.7 | 10.6 | 1.54 | — | — | — | — |
原料油 | 饱和分/% (质量) | 芳香分/% (质量) | 胶质/%(质量) | 沥青质/% (质量) |
---|---|---|---|---|
VR | 9.5 | 38.4 | 30.7 | 21.4 |
DO | 14.1 | 59.4 | 25.8 | 0.8 |
BO-1 | 12.8 | 53.8 | 23.4 | 10.2 |
BO-2 | 11.4 | 47.9 | 20.8 | 20.1 |
表2 四种重质原料油的四组分组成
Table 2 Four fraction components in DO, BO-1, BO-2 and VR
原料油 | 饱和分/% (质量) | 芳香分/% (质量) | 胶质/%(质量) | 沥青质/% (质量) |
---|---|---|---|---|
VR | 9.5 | 38.4 | 30.7 | 21.4 |
DO | 14.1 | 59.4 | 25.8 | 0.8 |
BO-1 | 12.8 | 53.8 | 23.4 | 10.2 |
BO-2 | 11.4 | 47.9 | 20.8 | 20.1 |
T/℃ | 密度/(g/ml) | |||
---|---|---|---|---|
DO | BO-1 | BO-2 | VR | |
110 | 1.008 | 1.019 | 1.030 | 1.037 |
120 | 1.001 | 1.011 | 1.024 | 1.030 |
130 | 0.994 | 1.007 | 1.017 | 1.024 |
140 | 0.988 | 0.998 | 1.010 | 1.017 |
150 | 0.983 | 0.995 | 1.004 | 1.011 |
表3 不同温度下四种原料油的密度
Table 3 Densities of four feedstocks under different temperatures
T/℃ | 密度/(g/ml) | |||
---|---|---|---|---|
DO | BO-1 | BO-2 | VR | |
110 | 1.008 | 1.019 | 1.030 | 1.037 |
120 | 1.001 | 1.011 | 1.024 | 1.030 |
130 | 0.994 | 1.007 | 1.017 | 1.024 |
140 | 0.988 | 0.998 | 1.010 | 1.017 |
150 | 0.983 | 0.995 | 1.004 | 1.011 |
原料油 | 150℃ | 200℃ | 250℃ | 300℃ | ||||
---|---|---|---|---|---|---|---|---|
P/MPa | 溶解度/(mol/kg) | P/MPa | 溶解度/(mol/kg) | P/MPa | 溶解度/(mol/kg) | P/MPa | 溶解度/(mol/kg) | |
DO | 2.537 | 0.045 | 2.328 | 0.047 | 2.386 | 0.066 | 2.571 | 0.077 |
4.266 | 0.070 | 4.167 | 0.076 | 4.144 | 0.089 | 4.631 | 0.11 | |
6.386 | 0.096 | 6.285 | 0.11 | 6.288 | 0.12 | 6.129 | 0.13 | |
8.098 | 0.12 | 8.497 | 0.14 | 8.405 | 0.16 | 8.121 | 0.16 | |
10.266 | 0.15 | 10.613 | 0.17 | 10.484 | 0.19 | 9.96 | 0.19 | |
13.082 | 0.19 | 12.512 | 0.20 | 12.546 | 0.22 | 11.951 | 0.23 | |
15.257 | 0.20 | 14.846 | 0.23 | 14.454 | 0.25 | 14.356 | 0.27 | |
16.062 | 0.22 | 18.814 | 0.28 | 16.127 | 0.27 | 16.632 | 0.32 | |
BO-1 | 2.311 | 0.037 | 2.312 | 0.048 | 2.121 | 0.059 | 2.121 | 0.071 |
4.524 | 0.059 | 4.204 | 0.070 | 4.392 | 0.085 | 4.518 | 0.097 | |
6.465 | 0.089 | 6.141 | 0.098 | 6.414 | 0.11 | 6.399 | 0.13 | |
8.253 | 0.11 | 8.567 | 0.13 | 8.491 | 0.15 | 8.377 | 0.16 | |
10.155 | 0.14 | 10.468 | 0.16 | 10.401 | 0.17 | 10.113 | 0.20 | |
12.396 | 0.16 | 12.313 | 0.18 | 12.527 | 0.20 | 12.304 | 0.23 | |
14.408 | 0.18 | 14.016 | 0.20 | 14.261 | 0.24 | 14.653 | 0.26 | |
17.172 | 0.21 | 16.143 | 0.23 | 16.941 | 0.27 | 16.681 | 0.30 | |
BO-2 | 2.334 | 0.024 | 2.115 | 0.040 | 2.333 | 0.055 | 2.133 | 0.066 |
4.238 | 0.041 | 4.478 | 0.066 | 4.888 | 0.082 | 4.594 | 0.097 | |
6.393 | 0.063 | 6.294 | 0.090 | 6.193 | 0.11 | 6.672 | 0.13 | |
8.509 | 0.087 | 8.377 | 0.11 | 8.503 | 0.13 | 8.386 | 0.16 | |
10.223 | 0.11 | 10.324 | 0.14 | 10.435 | 0.16 | 9.837 | 0.18 | |
12.433 | 0.14 | 12.558 | 0.17 | 12.252 | 0.19 | 12.206 | 0.21 | |
14.555 | 0.17 | 14.534 | 0.19 | 14.372 | 0.22 | 14.365 | 0.25 | |
16.166 | 0.18 | 17.444 | 0.22 | 16.577 | 0.25 | 17.033 | 0.29 | |
VR | 2.144 | 0.017 | 2.147 | 0.033 | 2.334 | 0.046 | 2.251 | 0.053 |
4.324 | 0.036 | 4.333 | 0.058 | 4.137 | 0.069 | 4.134 | 0.080 | |
6.162 | 0.050 | 6.156 | 0.079 | 6.158 | 0.092 | 6.113 | 0.12 | |
8.098 | 0.074 | 8.147 | 0.093 | 8.288 | 0.12 | 7.813 | 0.13 | |
10.067 | 0.088 | 10.085 | 0.11 | 9.736 | 0.15 | 10.438 | 0.17 | |
11.795 | 0.11 | 11.954 | 0.14 | 12.043 | 0.17 | 11.666 | 0.20 | |
13.930 | 0.12 | 14.173 | 0.16 | 14.093 | 0.19 | 14.632 | 0.24 | |
18.046 | 0.18 | 17.758 | 0.20 | 17.263 | 0.23 | 17.722 | 0.28 |
表4 氢气在DO、BO-1、BO-2、VR中溶解度数据
Table 4 Solubility of hydrogen in DO, BO-1, BO-2 and VR
原料油 | 150℃ | 200℃ | 250℃ | 300℃ | ||||
---|---|---|---|---|---|---|---|---|
P/MPa | 溶解度/(mol/kg) | P/MPa | 溶解度/(mol/kg) | P/MPa | 溶解度/(mol/kg) | P/MPa | 溶解度/(mol/kg) | |
DO | 2.537 | 0.045 | 2.328 | 0.047 | 2.386 | 0.066 | 2.571 | 0.077 |
4.266 | 0.070 | 4.167 | 0.076 | 4.144 | 0.089 | 4.631 | 0.11 | |
6.386 | 0.096 | 6.285 | 0.11 | 6.288 | 0.12 | 6.129 | 0.13 | |
8.098 | 0.12 | 8.497 | 0.14 | 8.405 | 0.16 | 8.121 | 0.16 | |
10.266 | 0.15 | 10.613 | 0.17 | 10.484 | 0.19 | 9.96 | 0.19 | |
13.082 | 0.19 | 12.512 | 0.20 | 12.546 | 0.22 | 11.951 | 0.23 | |
15.257 | 0.20 | 14.846 | 0.23 | 14.454 | 0.25 | 14.356 | 0.27 | |
16.062 | 0.22 | 18.814 | 0.28 | 16.127 | 0.27 | 16.632 | 0.32 | |
BO-1 | 2.311 | 0.037 | 2.312 | 0.048 | 2.121 | 0.059 | 2.121 | 0.071 |
4.524 | 0.059 | 4.204 | 0.070 | 4.392 | 0.085 | 4.518 | 0.097 | |
6.465 | 0.089 | 6.141 | 0.098 | 6.414 | 0.11 | 6.399 | 0.13 | |
8.253 | 0.11 | 8.567 | 0.13 | 8.491 | 0.15 | 8.377 | 0.16 | |
10.155 | 0.14 | 10.468 | 0.16 | 10.401 | 0.17 | 10.113 | 0.20 | |
12.396 | 0.16 | 12.313 | 0.18 | 12.527 | 0.20 | 12.304 | 0.23 | |
14.408 | 0.18 | 14.016 | 0.20 | 14.261 | 0.24 | 14.653 | 0.26 | |
17.172 | 0.21 | 16.143 | 0.23 | 16.941 | 0.27 | 16.681 | 0.30 | |
BO-2 | 2.334 | 0.024 | 2.115 | 0.040 | 2.333 | 0.055 | 2.133 | 0.066 |
4.238 | 0.041 | 4.478 | 0.066 | 4.888 | 0.082 | 4.594 | 0.097 | |
6.393 | 0.063 | 6.294 | 0.090 | 6.193 | 0.11 | 6.672 | 0.13 | |
8.509 | 0.087 | 8.377 | 0.11 | 8.503 | 0.13 | 8.386 | 0.16 | |
10.223 | 0.11 | 10.324 | 0.14 | 10.435 | 0.16 | 9.837 | 0.18 | |
12.433 | 0.14 | 12.558 | 0.17 | 12.252 | 0.19 | 12.206 | 0.21 | |
14.555 | 0.17 | 14.534 | 0.19 | 14.372 | 0.22 | 14.365 | 0.25 | |
16.166 | 0.18 | 17.444 | 0.22 | 16.577 | 0.25 | 17.033 | 0.29 | |
VR | 2.144 | 0.017 | 2.147 | 0.033 | 2.334 | 0.046 | 2.251 | 0.053 |
4.324 | 0.036 | 4.333 | 0.058 | 4.137 | 0.069 | 4.134 | 0.080 | |
6.162 | 0.050 | 6.156 | 0.079 | 6.158 | 0.092 | 6.113 | 0.12 | |
8.098 | 0.074 | 8.147 | 0.093 | 8.288 | 0.12 | 7.813 | 0.13 | |
10.067 | 0.088 | 10.085 | 0.11 | 9.736 | 0.15 | 10.438 | 0.17 | |
11.795 | 0.11 | 11.954 | 0.14 | 12.043 | 0.17 | 11.666 | 0.20 | |
13.930 | 0.12 | 14.173 | 0.16 | 14.093 | 0.19 | 14.632 | 0.24 | |
18.046 | 0.18 | 17.758 | 0.20 | 17.263 | 0.23 | 17.722 | 0.28 |
油样 | T/℃ | P/MPa | 实验值/% | 计算值/% | 相对偏差/% |
---|---|---|---|---|---|
VR | 150 | 18.046 | 3.70 | 3.69 | 0.1 |
13.930 | 2.88 | 2.88 | 0.1 | ||
11.795 | 2.25 | 2.46 | 8.9 | ||
10.067 | 1.90 | 2.11 | 10.7 | ||
200 | 17.758 | 4.08 | 4.01 | 1.7 | |
14.173 | 3.16 | 3.23 | 2.4 | ||
11.954 | 2.89 | 2.74 | 5.1 | ||
10.085 | 2.21 | 2.33 | 5.4 | ||
250 | 17.263 | 4.69 | 4.30 | 8.2 | |
14.093 | 3.90 | 3.55 | 9.1 | ||
12.043 | 3.43 | 3.05 | 11.0 | ||
9.736 | 2.93 | 2.48 | 15.4 | ||
300 | 17.722 | 5.54 | 4.87 | 12.2 | |
14.632 | 4.75 | 4.06 | 14.7 | ||
11.666 | 3.99 | 3.27 | 18.1 | ||
10.438 | 3.42 | 2.93 | 14.2 | ||
DO | 150 | 16.062 | 4.38 | 4.39 | 0.2 |
15.257 | 4.04 | 4.06 | 0.6 | ||
13.082 | 3.76 | 3.51 | 6.5 | ||
10.226 | 3.02 | 2.78 | 7.8 | ||
200 | 18.814 | 5.67 | 5.96 | 5.1 | |
14.846 | 4.51 | 4.78 | 6.1 | ||
12.512 | 3.83 | 4.07 | 6.1 | ||
10.613 | 3.25 | 3.47 | 6.9 | ||
250 | 16.127 | 5.59 | 6.13 | 9.6 | |
14.454 | 5.04 | 5.53 | 9.7 | ||
12.546 | 4.36 | 4.83 | 10.9 | ||
10.484 | 3.72 | 4.07 | 9.3 | ||
300 | 16.632 | 6.43 | 7.40 | 15.0 | |
14.356 | 5.50 | 6.51 | 18.3 | ||
11.941 | 4.54 | 5.40 | 19.0 | ||
9.960 | 3.91 | 4.53 | 15.8 |
表5 氢气在减渣和脱沥青油中溶解度模拟计算结果
Table 5 Simulation results of hydrogen solubility in VR and deasphalted oil
油样 | T/℃ | P/MPa | 实验值/% | 计算值/% | 相对偏差/% |
---|---|---|---|---|---|
VR | 150 | 18.046 | 3.70 | 3.69 | 0.1 |
13.930 | 2.88 | 2.88 | 0.1 | ||
11.795 | 2.25 | 2.46 | 8.9 | ||
10.067 | 1.90 | 2.11 | 10.7 | ||
200 | 17.758 | 4.08 | 4.01 | 1.7 | |
14.173 | 3.16 | 3.23 | 2.4 | ||
11.954 | 2.89 | 2.74 | 5.1 | ||
10.085 | 2.21 | 2.33 | 5.4 | ||
250 | 17.263 | 4.69 | 4.30 | 8.2 | |
14.093 | 3.90 | 3.55 | 9.1 | ||
12.043 | 3.43 | 3.05 | 11.0 | ||
9.736 | 2.93 | 2.48 | 15.4 | ||
300 | 17.722 | 5.54 | 4.87 | 12.2 | |
14.632 | 4.75 | 4.06 | 14.7 | ||
11.666 | 3.99 | 3.27 | 18.1 | ||
10.438 | 3.42 | 2.93 | 14.2 | ||
DO | 150 | 16.062 | 4.38 | 4.39 | 0.2 |
15.257 | 4.04 | 4.06 | 0.6 | ||
13.082 | 3.76 | 3.51 | 6.5 | ||
10.226 | 3.02 | 2.78 | 7.8 | ||
200 | 18.814 | 5.67 | 5.96 | 5.1 | |
14.846 | 4.51 | 4.78 | 6.1 | ||
12.512 | 3.83 | 4.07 | 6.1 | ||
10.613 | 3.25 | 3.47 | 6.9 | ||
250 | 16.127 | 5.59 | 6.13 | 9.6 | |
14.454 | 5.04 | 5.53 | 9.7 | ||
12.546 | 4.36 | 4.83 | 10.9 | ||
10.484 | 3.72 | 4.07 | 9.3 | ||
300 | 16.632 | 6.43 | 7.40 | 15.0 | |
14.356 | 5.50 | 6.51 | 18.3 | ||
11.941 | 4.54 | 5.40 | 19.0 | ||
9.960 | 3.91 | 4.53 | 15.8 |
1 | Humberto A C , Bernardo C C , Veronica U V , et al . Predictive method of hydrogen solubility in heavy petroleum fractions using EOS/GE and group contributions methods[J]. Fuel, 2018, 224: 619-627. |
2 | 王永恒, 翁惠新 . 柴油烃类组成对氢气在柴油中平衡溶解度的关联计算[J]. 石油化工, 2015, 44(11): 1344-1350. |
Wang Y H , Weng H X . Correlation of hydrogen equilibrium solubility in diesel oil with hydrocarbon composition of diesel oil[J]. Petrochemical Technology, 2015, 44(11): 1344-1350. | |
3 | 王宁 . 氢气在某些体系中的溶解及吸附行为研究[D]. 天津: 天津大学, 2006. |
Wang N . Studies on solubility and adsorption of hydrogen in some systems[D]. Tianjin: Tianjin University, 2006. | |
4 | Jongkee P , Robert L R , Khaled A M . Solubilities of hydrogen in aromatic hydrocarbons from 323 to 433 K and pressures to 21.7 MPa[J]. J. Chem. Eng. Data, 1996, 41(1): 70-73. |
5 | Jongkee P , Robert L R , Khaled A M . Solubilities of hydrogen in heavy normal paraffins at temperature from 323.2 to 423.2 K and pressures to 17.4 MPa[J]. J. Chem. Eng. Data, 1995, 40(1): 241-244. |
6 | Erwin B . Solubility of hydrogen in 10 organic solvents at 298.15, 323.15 and 373.15 K[J]. J. Chem. Eng. Data, 1985, 30(3): 269-273. |
7 | Tomoya T , Yoshiko S , Toshihiko H , et al . Hydrogen solubility in a chemical hydrogen storage medium, aromatic hydrocarbon, cyclic hydrocarbon, and their mixture for fuel cell systems[J]. Fluid Phase Equilibria, 2005, 228/229(2): 499-503. |
8 | 罗化峰, 郭剑虹, 凌开成, 等 . 氢气在烃类混合溶剂中高压溶解度的测定[J]. 煤炭转化, 2011, 34(2): 55-58. |
Luo H F , Guo J H , Ling K C , et al . Measurement of hydrogen solubility in solvents mixtures[J]. Coal Conversion, 2011, 34(2): 55-58. | |
9 | 赵亮富, 赵玉龙, 吕朝晖, 等 . 氢气和一氧化碳在混二甲苯中的溶解度[J]. 化学反应工程与工艺, 2000, 16(4): 396-400. |
Zhao L F , Zhao Y L , Lyu Z H , et al . Solubility of H2 and CO in mixed xylene[J]. Chemical Reaction Engineering and Technology, 2000, 16(4): 396-400. | |
10 | 刘晨光, 阙国和 . 氢气在石油馏分中溶解度的测定[J]. 炼油设计, 1999, 29(5): 33-36. |
Liu C G , Que G H . Measurement of hydrogen solubility in petroleum fractions[J]. Petroleum Refinery Engineering, 1999, 29(5): 33-36. | |
11 | 王世丽, 翟康, 张瑞芹, 等 . 氢气在柴油中溶解度的测定与模拟计算[J]. 化工进展, 2013, 32(9): 2049-2055. |
Wang S L , Zhai K , Zhang R Q , et al . Measurement and calculation of hydrogen solubility in diesel[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 2049-2055. | |
12 | Lei Z G , Guo Y Y , Zhao L , et al . H2 solubility and mass transfer in diesel: an experimental and modeling study[J]. Energy & Fuels, 2016, 30(8): 6257-6263. |
13 | Beens J , Brinkman U A T . The role of gas chromatography in compositional analyses in the petroleum industry[J]. TrAC Trends in Analytical Chemistry, 2000, 19(4): 260-275. |
14 | Raki L , Masson J F , Collins P . Rapid bulk fractionation of maltenes into saturates, aromatics, and resins by flash chromatography[J]. Energy & Fuels, 2000, 14(1): 160-163. |
15 | Pomerantz A E , Hammond M R , Morrow A L , et al . Two-step laser mass spectrometry of asphaltenes[J]. J. Am. Chem. Soc., 2008, 130(23): 7216-7217. |
16 | Mullins O C . The asphaltenes[J]. Annu. Rev. Anal. Chem., 2011, 4: 393-418. |
17 | 赵璐 . 渣油加氢体系相平衡及计算流体力学研究[D]. 北京: 北京化工大学, 2016. |
Zhao L . Phase equilibrium and computational fluid dynamics research on residue hydrogenation system[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
18 | 孙显锋, 孙学文, 赵锁奇, 等 . 超临界溶剂脱沥青操作参数对辽河稠油减压渣油脱油沥青的影响[J]. 石油炼制与化工, 2010, 41(2): 30-34. |
Sun X F , Sun X W , Zhao S Q , et al . Influence of supercritical solvent deasphalting operation parameters on the de-oiled asphalt of Liaohe heavy crude vacuum residuum[J]. Petroleum Processing and Petrochemicals, 2010, 41(2): 30-34. | |
19 | 孙显锋, 孙学文, 许志明, 等 . 辽河稠油减渣深度戊烷脱沥青的研究[J]. 燃料化学学报, 2010, 38(5): 565-570. |
Sun X F , Sun X W , Xu Z M , et al . Solvent deep deasphalting of Liaohe heavy oil vacuum residuum[J]. Journal of Fuel Chemistry and Technology, 2010, 38(5): 565-570. | |
20 | 范勐, 孙学文, 许志明, 等 . 加入环戊烷对超临界溶剂脱沥青加工加拿大油砂沥青的影响[J]. 现代化工, 2011, 31(12): 70-74. |
Fan M , Sun X W , Xu Z M , et al . Influence of cyclopentane on supercritical solvent deasphalting behavior of Canadian oil sand bitumen[J]. Modern Chemical Industry, 2011, 31(12): 70-74. | |
21 | Thompson R E , Edmister W C . Vapor-liquid equilibria in hydrogen-benzene and hydrogen-cyclohexane mixtures[J]. AIChE J., 1965, 11(3): 457-461. |
22 | Cai H Y , Shaw J M , Chung K H . Hydrogen solubility measurements in heavy oil and bitumen cuts[J]. Fuel, 2001, 80(8): 1055-1063. |
23 | Ji S , Wang Z , Guo A , et al . Determination of hydrogen solubility in heavy fractions of crude oils by a modified direct method[J]. J. Chem. Eng. Data, 2013, 58(12): 3453-3457. |
24 | Lal D , Otto F D , Mather A E . Solubility of hydrogen in Athabasca bitumen[J]. Fuel, 1999, 78(12): 1437-1441. |
25 | Saajanlehto M , Uusi-kyyny P , Alopaeus V . Hydrogen solubility in heavy oil systems: experiments and modeling[J]. Fuel, 2014, 137: 393-404. |
26 | Svrcek W Y , Mehrotra A K . Gas solubility, viscosity and density measurements for Athabasca bitumen[J]. J. Can. Petr. Technol., 1982, 21(4): 31-38. |
27 | 吉顺峰 . 重油中氢气溶解规律及临氢热改制机制研究[D]. 山东: 中国石油大学(华东), 2015. |
Ji S F . Hydrogen solubility in residues and mechanism of residue thermal processing under hydrogen[D]. Shandong: China University of Petroleum (East China), 2015. | |
28 | 曾宿主, 王琪, 李锐, 等 . 不同原油价格下重油加工工艺路线的选择[J]. 石油炼制与化工, 2016, 47(9): 6-12. |
Zeng S Z , Wang Q , Li R , et al . Selection of heavy oil processing routes at various prices of crude oils[J]. Petroleum Processing and Petrochemicals, 2016, 47(9): 6-12. | |
29 | Danial-Frotain P , Gauthier T , Merdrignac I , et al . Reactivity study of Athabasca vacuum residue in hydroconversion conditions[J]. Catalysis Today, 2010, 150(3): 255-263. |
30 | 闫玉新 . 渣油催化加氢过程中催化剂表面的积炭行为研究[D]. 北京: 北京化工大学, 2017. |
Yan Y X . Study on coking on catalyst during catalytic hydroprocessing of residue[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
31 | 陈程, 曹晓娜, 徐广通, 等 . 渣油加氢失活催化剂的积炭规律[J]. 石油学报(石油化工), 2016, 32(6): 1221-1227. |
Chen C , Cao X N , Xu G T , et al . Patten of coke deposition on the spent residue hydrotreating catalysts[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(6): 1221-1227. | |
32 | Zhao S J , Kotlyar L S , Woods J R , et al . Effect of thermal and hydro-catalytic treatment on the molecular chemistry of narrow fractions or Athabasca bitumen pitch[J]. Energy & Fuels, 2001, 15(1): 113-119. |
33 | Zhao S J , Kotlyar L S , Woods J R , et al . Molecular transformation of Athabasca bitumen end-cuts during coking and hydrocracking[J]. Fuel, 2001, 80(8): 1155-1163. |
34 | 武传波, 马波, 王少军, 等 . 渣油固定床连续加氢处理过程中沥青质性质变化研究[J]. 石油炼制与化工, 2010, 41(6): 8-11. |
Wu C B , Ma B , Wang S J , et al . Study on the changes of asphaltene properties in processing residue feed by fixed-bed hydrotreating[J]. Petroleum Processing and Petrochemicals, 2010, 41(6): 8-11. | |
35 | Castaneda L C , Munoz J A D , Ancheyta J . Comparison of approaches to determine hydrogen consumption during catalytic hydrotreating of oil fractions[J]. Fuel, 2011, 90(12): 3593-3601. |
36 | Lee C K , McGovern S J , da Silva L E M C , et al . Study compares methods that measure hydrogen use in diesel hydrotreaters[J]. Oil & Gas Journal, 2008, 106(38): 58-63. |
[1] | 吴子睿, 孙瑞, 石凌峰, 田华, 王轩, 舒歌群. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492. |
[2] | 田洪舟,杨高东,杨国强,罗华勋,周政,孟为民,曹宇,李磊,张锋,杨建,张志炳. 微界面强化重油浆态床低压加氢的传质基础[J]. 化工学报, 2020, 71(11): 4927-4935. |
[3] | 于冬雪, 惠贺龙, 何京东, 李松庚. 塑料与蜡(重油)催化共热解相互作用研究[J]. 化工学报, 2019, 70(8): 2971-2980. |
[4] | 李传宪, 蔡金洋, 程梁, 杨飞, 张皓若, 张莹. 沥青质引发的蜡油体系结蜡层分层现象及分层规律[J]. 化工学报, 2016, 67(6): 2426-2432. |
[5] | 张庆庆, 张华, 娄江峰, 李佳, 赵巍, 王袭, 刘占杰. 强非共沸工质R134a/R23/R14汽液相平衡和压焓图的构建及应用[J]. 化工学报, 2015, 66(7): 2387-2394. |
[6] | 李传宪, 白帆, 王燕. 原油组成对原油管道结蜡规律的影响[J]. 化工学报, 2014, 65(11): 4571-4578. |
[7] | 田盼盼1,郗小明2,李冬1,孙智慧1,李稳宏1. 影响煤焦油沥青质测定量的工艺参数[J]. 化工进展, 2014, 33(11): 2905-2908. |
[8] | 王擎,王智超,贾春霞,宫国玺. 基于固体13C核磁共振技术对油砂沥青质结构的研究[J]. 化工进展, 2014, 33(06): 1392-1396. |
[9] | 李瑞丽,李波,刘瑛. 萃取法脱除重油催化裂化柴油中的酸性组分[J]. 化工进展, 2014, 33(03): 568-572. |
[10] | 陈爱城,陈胜利,桑 磊,薛 扬,娄亚峰. 重油分子的孔内受限扩散研究进展[J]. 化工进展, 2013, 32(12): 2813-2818. |
[11] | 任 刚1,2,3,李宜强1,2,3. 原油稳定站换热器堵塞的成因[J]. 化工进展, 2013, 32(11): 2764-2767. |
[12] | 李玉军1,蔡卫权1,宋素娟1,王 文1,曹 宏2. 高效油烟机重油垢环保型水基清洗剂的研制[J]. 化工进展, 2013, 32(08): 1898-1901. |
[13] | 李瑞丽,刘 瑛,李 波. 氧化法脱除重油催化裂化柴油中的硫化物[J]. 化工进展, 2013, 32(08): 1813-1817. |
[14] | 刘 娟1,3, 赵亚溥2,胡 斌1,任嗣利1. 油水乳状液的稳定机理及其化学破乳技术的研究进展[J]. 化工进展, 2013, 32(04): 891-897. |
[15] | 傅 亮,杨基和,杜明育. 油浆抽余油FCC反应[J]. 化工进展, 2013, 32(04): 799-803. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||