化工学报 ›› 2019, Vol. 70 ›› Issue (10): 4021-4031.DOI: 10.11949/0438-1157.20190421
收稿日期:
2019-04-23
修回日期:
2019-06-11
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
周静红
作者简介:
鲁浩天(1993—),男,硕士研究生,基金资助:
Haotian LU(),Yiqin CHEN,Jinghong ZHOU(),Zhijun SUI,Xinggui ZHOU
Received:
2019-04-23
Revised:
2019-06-11
Online:
2019-10-05
Published:
2019-10-05
Contact:
Jinghong ZHOU
摘要:
电化学双电层电容器的低能量密度限制了其在储能动力等领域的应用,而有机电解液作为提升器件能量密度的关键因素,研究其导电电解质的特性具有重要的意义。通过构建电化学双电层电容器的动态模型,模拟了电化学双电层电容器的循环伏安曲线,并定量探究和解析了离子溶剂化尺寸和扩散系数对电容性能的影响。模拟结果表明:在低扫描速率情况下,电容性能主要受控于双电层结构特性,比电容随着离子溶剂化尺寸的减小而增大,而离子扩散系数对其电容性能没有影响;在高扫描速率情况下,电容性能会受控于离子传质过程,比电容随着离子溶剂化尺寸和离子扩散系数的增大而增大。并基于模拟计算和分析结果提出了理性设计和优化电化学双电层电容器的策略。
中图分类号:
鲁浩天, 陈怡沁, 周静红, 隋志军, 周兴贵. 电化学双电层电容器动态模拟:离子尺寸及扩散系数的优化[J]. 化工学报, 2019, 70(10): 4021-4031.
Haotian LU, Yiqin CHEN, Jinghong ZHOU, Zhijun SUI, Xinggui ZHOU. Simulation and optimization of electrochemical double layer capacitors: effects of ion size and diffusion coefficient[J]. CIESC Journal, 2019, 70(10): 4021-4031.
Parameters | Value |
---|---|
minimum value of imposed potential/V | -0.5 |
maximum value of imposed potential/V | 0.5 |
scan rate of cyclic voltammetry/(V·s-1) | 10,102,104,105 |
cycle number | 6 |
local temperature/K | 298.5 |
bulk electrolyte concentration/(mol·L-1) | 1.0 |
solvated ion size/nm | 0.4, 0.6, 0.8 |
diffuse layer thickness/μm | 200 |
ion valency | 1 |
initial diffusion coefficient of ions in electrolyte/(m2·s-1)[ | 3.17×10-10 |
dielectric constant of electrolyte within diffuse layer[ | 61.4 |
dielectric constant of electrolyte within Stern layer | 6.5 |
表1 电化学双电层电容动态模型参数
Table 1 Parameters for elctric double capacitor dynamic state model simulation
Parameters | Value |
---|---|
minimum value of imposed potential/V | -0.5 |
maximum value of imposed potential/V | 0.5 |
scan rate of cyclic voltammetry/(V·s-1) | 10,102,104,105 |
cycle number | 6 |
local temperature/K | 298.5 |
bulk electrolyte concentration/(mol·L-1) | 1.0 |
solvated ion size/nm | 0.4, 0.6, 0.8 |
diffuse layer thickness/μm | 200 |
ion valency | 1 |
initial diffusion coefficient of ions in electrolyte/(m2·s-1)[ | 3.17×10-10 |
dielectric constant of electrolyte within diffuse layer[ | 61.4 |
dielectric constant of electrolyte within Stern layer | 6.5 |
图3 不同溶剂化离子尺寸下比表面电容随着扫描速率的变化
Fig.3 Predicted specific capacitance variations at different scan rates by simulation with different solvated ion diameters
图5 不同离子扩散系数下比表面电容随着扫描速率的变化
Fig.5 Predicted specific capacitance variations at different scan rates by simulation with different ion diffusion coefficients
图8 不同溶剂化离子尺寸条件下负极附近阳离子浓度和电势梯度随扫描电势的变化曲线
Fig.8 Cation concentration and potential gradient at interface of Stern and diffusion layer with linear sweep potential for different solvated ion diameters
图7 不同离子扩散系数条件下斯特恩层与扩散层界面处阳离子浓度随扫描电势的变化曲线
Fig. 7 Cation concentration at interface of Stern and diffusion layer with different ion diffusion coefficients
图9 不同溶剂化离子尺寸条件下在斯特恩层与扩散层界面处电势梯度随界面阳离子浓度的变化曲线
Fig.9 Relation of potential gradient with cation concentration at interface of Stern and diffusion layer with different solvated ion diameters
1 | Thounthong P , Raël S , Davat B . Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications[J]. Journal of Power Sources, 2009, 193(1): 376-385. |
2 | Conway B E . Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage[J]. Journal of the Electrochemical Society, 1991, 138(6): 1539-1548. |
3 | Wang Y , Song Y , Xia Y . Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950. |
4 | Zhong C , Deng Y , Hu W , et al . A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539. |
5 | Chmiola J , Yushin G , Gogotsi Y , et al . Anomalous increase in carbon at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763. |
6 | Sun G , Song W , Liu X , et al . Capacitive matching of pore size and ion size in the negative and positive electrodes for supercapacitors[J]. Electrochimica Acta, 2011, 56(25): 9248-9256. |
7 | Izadi-Najafabadi A , Yasuda S , Kobashi K , et al . Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density[J]. Advanced Materials, 2010, 22(35): E235-E241. |
8 | Saito M , Kawaharasaki S , Ito K , et al . Strategies for fast ion transport in electrochemical capacitor electrolytes from diffusion coefficients, ionic conductivity, viscosity, density and interaction energies based on HSAB theory[J]. RSC Advances, 2017, 7(24): 14528-14535. |
9 | Largeot C , Portet C , Chmiola J , et al . Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731. |
10 | 武长城, 吴宝军, 段建, 等 . 电解质离子尺寸对超级电容器电化学性能的影响[J]. 天津工业大学学报, 2019, 38(1): 39-44. |
Wu C C , Wu B J , Duan J , et al . Influence of size of electrolyte ion on the electrochemical performanceof supercapacitor[J]. Journal of Tianjin Polytechnic University, 2019, 38(1): 39-44. | |
11 | Simon P , Gogotsi Y . Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854. |
12 | Izadi-Najafabadi A , Futaba D N , Iijima S , et al . Ion diffusion and electrochemical capacitance in aligned and packed single-walled carbon nanotubes[J]. Journal of the American Chemical Society, 2010, 132(51): 18017-18019. |
13 | 鲁浩天, 周静红, 叶光华, 等 . 电化学电容器连续模型的建立与研究进展[J]. 电化学, 2018, 24(5): 517-528. |
Lu H T , Zhou J H , Ye G H , et al . Recent advances in continuous models of electrochemical supercapacitors[J]. Journal of Electrochemistry, 2018, 24(5): 517-528. | |
14 | Wang H , Pilon L . Physical interpretation of cyclic voltammetry for measuring electric double layer capacitances[J]. Electrochimica Acta, 2012, 64: 130-139. |
15 | Gouy M . Sur la constitution de la charge électrique à la surface d'un électrolyte[J]. Journal de Physique Théorique et Appliquée, 1910, 9(1): 457-468. |
16 | Chapman D L . A contribution to the theory of electrocapillarity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1913, 25(148): 475-481. |
17 | Adamczyk Z , Belouschek P , Lorenz D . Electrostatic interactions of bodies bearing thin double-layers (Ⅰ): General formulation[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1990, 94(12): 1483-1492. |
18 | Kilic M S , Bazant M Z , Ajdari A . Steric effects in the dynamics of electrolytes at large applied voltages (Ⅰ): Double-layer charging[J]. Physical Review E, 2007, 75(2): 021502. |
19 | Zhang L L , Zhou R , Zhao X S . Graphene-based materials as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2010, 20(29): 5983-5992. |
20 | Senapati S , Chandra A . Dielectric constant of water confined in a nanocavity[J]. Journal of Physical Chemistry B, 2001, 105(22): 5106-5109. |
21 | Hantel M M , Weingarth D , Kötz R . Parameters determining dimensional changes of porous carbons during capacitive charging[J]. Carbon, 2014, 69: 275-286. |
22 | Sullivan J M , Hanson D C , Keller R . Diffusion coefficients in propylene carbonate, dimethyl formamide, acetonitrile, and methyl formate[J]. Journal of the Electrochemical Society, 1970, 117(6): 779-780. |
23 | Kovacs H , Kowalewski J , Maliniak A , et al . Multinuclear relaxation and NMR self-diffusion study of the molecular dynamics in acetonitrile-chloroform liquid mixtures[J]. Journal of Physical Chemistry, 1989, 93(2): 962-969. |
24 | Kalugin O N , Chaban V V , Loskutov V V , et al . Uniform diffusion of acetonitrile inside carbon nanotubes favors supercapacitor performance[J]. Nano Letters, 2008, 8(8): 2126-2130. |
25 | Nishikawa K , Fukunaka Y , Sakka T , et al . Measurement of LiClO4 diffusion coefficient in propylene carbonate by moirá pattern[J]. Journal of the Electrochemical Society, 2006, 153(5): A830-A834. |
26 | Wang H , Varghese J , Pilon L . Simulation of electric double layer capacitors with mesoporous electrodes: effects of orphology and electrolyte permittivity[J]. Electrochimica Acta, 2011, 56(17): 6189-6197. |
27 | Daniels I N , Wang Z , Laird B B . Dielectric properties of organic solvents in an electric field[J]. Journal of Physical Chemistry C, 2017, 121(2): 1025-1031. |
28 | Pech D , Brunet M , Durou H , et al . Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nature Nanotechnology, 2010, 5(9): 651-654. |
29 | Cohen H , Cooley J . The numerical solution of the time-dependent Nernst-Planck equations[J]. Biophysical Journal, 1965, 5(2): 145-162. |
30 | Conway B E . Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications[M]. Springer Science & Business Media, 2013. |
31 | Wang H , Pilon L . Accurate simulations of electric double layer capacitance of ultramicroelectrodes[J]. Journal of Physical Chemistry C, 2011, 115(33): 16711-16719. |
32 | Qu Q T , Wang B , Yang L C , et al . Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes[J]. Electrochemistry Communications, 2008, 10(10): 1652-1655. |
33 | Lee H Y , Goodenough J B . Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry, 1999, 144(1): 220-223. |
34 | Reddy R N , Reddy R G . Sol-gel MnO2 as an electrode material for electrochemical capacitors[J]. Journal of Power Sources, 2003, 124(1): 330-337. |
35 | Bazant M Z , Kilic M S , Storey B D , et al . Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions[J]. Advances in Colloid and Interface Science, 2009, 152(1/2): 48-88. |
36 | Jiang D E , Wu J . Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode[J]. Nanoscale, 2014, 6(10): 5545-5550. |
37 | Chae W S , Gough D V , Ham S K , et al . Effect of ordered intermediate porosity on ion transport in hierarchically nanoporous electrodes[J]. ACS Applied Materials and Interfaces, 2012, 4(8): 3973-3979. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[3] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[4] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[5] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[6] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[7] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[8] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[9] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[10] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[11] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[12] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[13] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
[14] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[15] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||