1 |
Sahu R, Song B J, Im J S, et al. A review of recent advances in catalytic hydrocracking of heavy residues[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 12-24.
|
2 |
靳爱民. 浆态床渣油加氢技术新进展——CLG公司推出LC-SLURRY工艺[J]. 石油炼制与化工, 2016, 47(8): 92.
|
|
Jin A M. New progress in slurry-bed residual oil hydrogenation technology-CLG launched the LC-SLURRY process[J]. Petroleum Processing and Petrochemicals, 2016, 47(8): 92.
|
3 |
陶梦莹, 侯焕娣, 董明, 等. 浆态床加氢技术的研究进展[J]. 现代化工, 2015, 35(5): 34-37+39.
|
|
Tao M Y, Hou H D, Dong M, et al. Research progress of slurry bed hydrocracking technology[J]. Modern Chemical Industry, 2015, 35(5): 34-37+39.
|
4 |
李雪静, 任文坡. 国内外渣油悬浮床加氢裂化技术进展[J]. 石化技术, 2012, 19(1): 65-70.
|
|
Li X J, Ren W P. Progress in suspension bed hydrocracking technology for residue slurry in oil from domestic and abroad[J]. Petrochemical Industry Technology, 2012, 19(1): 65-70.
|
5 |
刘美, 刘金东, 张树广, 等. 悬浮床重油加氢裂化技术进展[J]. 应用化工, 2017, 46(12): 2435-2440.
|
|
Liu M, Liu J D, Zhang S G, et al. Advances of heavy oil hydrocracking in suspended bed[J]. Applied Chemical Industry, 2017, 46(12): 2435-2440.
|
6 |
李雪静, 乔明, 魏寿祥, 等. 劣质重油加工技术进展与发展趋势[J]. 石化技术与应用, 2019, 37(1): 1-8.
|
|
Li X J, Qiao M, Wei S X, et al. Technical progress and development trend of inferior heavy oil processing[J]. Petrochemical Technology and Application, 2019, 37(1): 1-8.
|
7 |
Rana M S, Sámano V, Ancheyta J, et al. A review of recent advances on process technologies for upgrading of heavy oils and residua[J]. Fuel, 2007, 86(9): 1216-1231.
|
8 |
Zhang S, Liu D, Deng W, et al. A review of slurry-phase hydrocracking heavy oil technology[J]. Energy & Fuels, 2007, 21(6): 3057-3062.
|
9 |
Liu Y, Gao L, Wen L, et al. Recent advances in heavy oil hydroprocessing technologies[J]. Recent Patents on Chemical Engineering, 2009, 2(1): 22-36.
|
10 |
Bellussi G, Rispoli G, Landoni A, et al. Hydroconversion of heavy residues in slurry reactors: developments and perspectives[J]. Journal of Catalysis, 2013, 308: 189-200.
|
11 |
Castaneda L C, Munoz J A D, Ancheyta J. Current situation of emerging technologies for upgrading of heavy oils[J]. Catalysis Today, 2014, 220: 248-273.
|
12 |
Speight J G. The Chemistry and Technology of Petroleum[M]. 5th ed. Boca Raton: CRC Press, 2014: 433-454.
|
13 |
Zecevic J, Vanbutsele G, Jong K P, et al. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature, 2015, 528(7581): 245-254
|
14 |
Jacobs P A, Dusselier M, Sels B F. Will zeolite‐based catalysis be as relevant in future biorefineries as in crude oil refineries?[J]. Angewandte Chemie-International Edition, 2014, 53(33): 8621-8626.
|
15 |
Primo A, Garcia H. Zeolites as catalysts in oil refining[J]. Chemical Society Reviews, 2014, 43(22): 7548-7561.
|
16 |
Jong K P, Zečević J, Friedrich H, et al. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts[J]. Angewandte Chemie-International Edition, 2010, 49(52): 10074-10078.
|
17 |
Bell A T. The impact of nanoscience on heterogeneous catalysis[J]. Science, 2003, 299(5613): 1688-1691.
|
18 |
Yang R T, Hernandez- Maldonado A J, Yang F H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003, 301(5629): 79-81.
|
19 |
Corma A, Díaz-cabañas M J, Martínez-triguero J, et al. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst[J]. Nature, 2002, 418(6897): 514-517.
|
20 |
Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chemical Reviews, 1995, 95(3): 559-614.
|
21 |
张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49.
|
|
Zhang Z B, Tian H Z, Zhang F, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49.
|
22 |
Joosten G E H, Danckwerts P V. Chemical reaction and effective interfacial areas in gas absorption[J]. Chemical Engineering Science, 1973, 28(2): 453-461.
|
23 |
Puranik S S, Vogelpohl A. Effective interfacial area in irrigated packed columns[J]. Chemical Engineering Science, 1974, 29(2): 501-507.
|
24 |
Nicklin D J. Two-phase bubble flow[J]. Chemical Engineering Science, 1962, 17(9): 693-702.
|
25 |
Tian H Z, Pi S F, Feng Y C, et al. One-dimensional drift-flux model of gas holdup in fine-bubble jet reactor[J]. Chemical Engineering Journal, 2020, 386: 121222
|
26 |
Fan L S, Tsuchiya K. Bubble Wake Dynamics in Liquids and Liquid-solid Suspensions[M]. Oxford: Butterworth-Heinemann, 1990: 39-48.
|
27 |
Wang B, Yang G, Tian H, et al. A new model of bubble sauter mean diameter in fine bubble-dominated columns[J]. Chemical Engineering Journal, 2020: 124673.
|
28 |
Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J]. AIChE Journal, 1955, 1(3): 289-295.
|
29 |
Sevik M, Park S H. The splitting of drops and bubbles by turbulent fluid flow[J]. Journal of Fluids Engineering, 1973, 95(1): 53-60.
|
30 |
Atkinson B W, Jameson G J, Nguyen A V, et al. Bubble breakup and coalescence in a plunging liquid jet bubble column[J]. Canadian Journal of Chemical Engineering, 2003, 81(3/4): 519-527.
|
31 |
Xing C T, Wang T F, Guo K Y, et al. A unified theoretical model for breakup of bubbles and droplets in turbulent flows[J]. AIChE Journal, 2015, 61(4): 1391-1403.
|
32 |
南京大学. MIHA纯气动操作条件下能量耗散调控模型建模方法: 109887550A[P].2019.
|
|
Nanjing University. Modeling method of energy dissipation regulation model under MIHA pure aerodynamic operating conditions: 109887550A[P]. 2019.
|
33 |
Riazi M R. Characterization and Properties of Petroleum Fractions [M]. West Conshohocken, PA: ASTM International, 2005: 111-115.
|
34 |
Poling B E, Prausnitz J M, O’Connell J P. The Properties of Gases and Liquids[M]. New York: Mcgraw-Hill, 2001.
|
35 |
Quayle O R. The parachors of organic compounds. An interpretation and catalogue[J]. Chemical Reviews, 1953, 53(3): 439-589.
|
36 |
The American Petroleum Institute Subcommittee on Technical Data. API Technical Data Book 10th Edition: Introduction[M]. The American Petroleum Institute and EPCON International, 2016.
|
37 |
Miqueu C, Satherley J, Mendiboure B, et al. The effect of P/N/A distribution on the parachors of petroleum fractions[J]. Fluid Phase Equilibria, 2001, 180(1/2): 327-344.
|
38 |
Liao Y, Lucas D. A literature review on mechanisms and models for the coalescence process of fluid particles [J]. Chemical Engineering Science, 2010, 65(10): 2851-2864.
|
39 |
Khuntia S, Majumder S K, Ghosh P. Microbubble-aided water and wastewater purification: a review[J]. Reviews in Chemical Engineering, 2012, 28(4/5/6): 191-221.
|
40 |
O’dowd W, Smith D N, Ruether J A, et al. Gas and solids behavior in a baffled and unbaffled slurry bubble column[J]. AIChE Journal, 1987, 33(12): 1959-1970.
|
41 |
Sada E, Kumazawa H, Lee C H, et al. Gas-liquid interfacial area and liquid-side mass-transfer coefficient in a slurry bubble column[J]. Industrial & Engineering Chemistry Research, 1987, 26(1): 112-116.
|
42 |
Fukuma M, Muroyama K, Yasunishi A. Specific gas-liquid interfacial area and liquid-phase mass transfer coefficient in a slurry bubble column[J]. Journal of Chemical Engineering of Japan, 1987, 20(3): 321-324.
|
43 |
张志炳.微界面传质强化技术[M]. 北京: 化学工业出版社, 2020: 295.
|
|
Zhang Z B. Microinterface Mass Transfer Intensification [M]. Beijing: Chemical Industry Press, 2020: 295.
|