化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1951-1963.DOI: 10.11949/j.issn.0438-1157.20181359
收稿日期:
2018-11-18
修回日期:
2019-01-07
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
李克忠
作者简介:
<named-content content-type="corresp-name">毛燕东</named-content>(1984—),女,博士,高级工程师,<email>myd0514@126.com</email>|李克忠(1976—),男,博士,高级工程师,<email>nyyjy@enn.cn</email>
基金资助:
Yandong MAO1,2(),Kezhong LI1(),Lei LIU1,Feng XIN2
Received:
2018-11-18
Revised:
2019-01-07
Online:
2019-05-05
Published:
2019-05-05
Contact:
Kezhong LI
摘要:
煤催化气化工艺中碱金属催化剂的引入加剧了气化炉的结渣,直接影响了流化床气化炉的正常操作。煤灰的烧结特性是流化床气化炉结渣的主要影响因素之一。通过自制的压差法烧结温度测定实验装置,并结合XRD 等分析表征及Factsage热力学软件模拟计算,考察了不同添加剂对煤灰烧结特性及气化性能的影响,并从矿物学角度探讨了添加剂对煤灰结渣特性及气化工艺的影响。结果表明,添加硅铝系添加剂可提高煤灰的烧结温度;相比硅系添加剂,添加高铝系添加剂对改善煤灰的烧结温度效果更明显;高铝系添加剂可作为一种高效的阻熔剂,但因在气化过程中容易同催化剂反应,导致催化剂催化性能降低,对煤的气化活性及催化剂回收率产生不利影响;添加氧化钙添加剂,煤的灰熔温度及烧结温度均增加,随氧化钙含量增加,灰熔点及烧结温度均升高,且对气化活性及催化剂回收率有良性作用;氧化钙可作为改善煤种结渣性的添加剂用于催化气化工艺中,需根据煤种性质及工艺特点确定适宜的添加量。
中图分类号:
毛燕东, 李克忠, 刘雷, 辛峰. 添加剂对催化气化工艺中煤灰结渣性及气化性能影响研究[J]. 化工学报, 2019, 70(5): 1951-1963.
Yandong MAO, Kezhong LI, Lei LIU, Feng XIN. Effect of additives on ash sintering behaviors and gasification performance in catalytic coal gasification process[J]. CIESC Journal, 2019, 70(5): 1951-1963.
Sample | Proximate analysis/%(mass) | Ultimate analysis/%(mass) | Ash fusion temperature①/℃ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vd | Cd | Hd | Nd | Sd | DT | ST | HT | FT | |
WJT | 10.15 | 6.9 | 32.92 | 71.25 | 4.1 | 0.76 | 0.15 | 1144 | 1264 | 1318 | 1355 |
表1 试样煤质分析
Table 1 Analysis of samples
Sample | Proximate analysis/%(mass) | Ultimate analysis/%(mass) | Ash fusion temperature①/℃ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vd | Cd | Hd | Nd | Sd | DT | ST | HT | FT | |
WJT | 10.15 | 6.9 | 32.92 | 71.25 | 4.1 | 0.76 | 0.15 | 1144 | 1264 | 1318 | 1355 |
Additive | Composition/% | |
---|---|---|
Al2O3 | SiO2 | |
alumina | > 99 | |
kaoline | 45.68 | 50.76 |
diatomite | 3.19 | 83.80 |
silicon dioxide | > 99 |
表2 硅铝系添加剂成分分析
Table 2 Composition analysis of Al, Si-containing additives
Additive | Composition/% | |
---|---|---|
Al2O3 | SiO2 | |
alumina | > 99 | |
kaoline | 45.68 | 50.76 |
diatomite | 3.19 | 83.80 |
silicon dioxide | > 99 |
Sample | Ash fusion temperature①/℃(Reducing atmosphere②) | |||
---|---|---|---|---|
DT | ST | HT | FT | |
WJT-K | 1008 | 1034 | 1076 | 1131 |
WJT-K-Al | 1350 | 1381 | 1392 | 1420 |
WJT-K-Ka | 1309 | 1342 | 1360 | 1389 |
WJT-K-Si | 1084 | 1126 | 1183 | 1204 |
WJT-K-Di | 1116 | 1153 | 1209 | 1231 |
表3 试样灰熔点分析
Table 3 Ash fusion temperatures of samples
Sample | Ash fusion temperature①/℃(Reducing atmosphere②) | |||
---|---|---|---|---|
DT | ST | HT | FT | |
WJT-K | 1008 | 1034 | 1076 | 1131 |
WJT-K-Al | 1350 | 1381 | 1392 | 1420 |
WJT-K-Ka | 1309 | 1342 | 1360 | 1389 |
WJT-K-Si | 1084 | 1126 | 1183 | 1204 |
WJT-K-Di | 1116 | 1153 | 1209 | 1231 |
Sample | Ash fusion temperature①/℃(Reducing atmosphere②) | |||
---|---|---|---|---|
DT | ST | HT | FT | |
WJT-K | 1008 | 1034 | 1076 | 1131 |
WJT-K-Ca 30 | 1056 | 1083 | 1106 | 1124 |
WJT-K- Ca 40 | 1068 | 1119 | 1179 | 1194 |
WJT-K- Ca 50 | 1121 | 1238 | 1301 | 1336 |
表4 试样灰熔点分析
Table 4 Ash fusion temperatures of samples
Sample | Ash fusion temperature①/℃(Reducing atmosphere②) | |||
---|---|---|---|---|
DT | ST | HT | FT | |
WJT-K | 1008 | 1034 | 1076 | 1131 |
WJT-K-Ca 30 | 1056 | 1083 | 1106 | 1124 |
WJT-K- Ca 40 | 1068 | 1119 | 1179 | 1194 |
WJT-K- Ca 50 | 1121 | 1238 | 1301 | 1336 |
1 | 焦嶕, 赵国浩, 张宝建 . 中国煤炭产业可持续发展策略: 基于系统基模的研究[J]. 经济问题, 2018, (3): 79-84. |
Jiao J , Zhao G H , Zhang B J . Study on sustainable development strategy of China s coal industry — based on systems archetypes [J]. Economic Problem, 2018, (3): 79-84. | |
2 | 周利红, 于永玲 . 煤催化气化制天然气专利技术进展[J]. 当代石油石化, 2015, 23(4): 21-26. |
Zhou L H , Yu Y L . The progress of patented technology in coal-based synthetic natural gas by catalytic gasification [J]. Petroleum & Petrochemical Today, 2015, 23(4): 21-26. | |
3 | 毛燕东, 毕继诚, 李金来, 等 . 一种由煤催化气化制甲烷的方法: 201010532452.6 [P]. 2010-11-02. |
Mao Y D , Bi J C , Li J L , et al . A method for producing methane by catalytic gasification of coal: 201010532452.6 [P]. 2010-11-02. | |
4 | 毛燕东, 李克忠, 孙志强, 等 . 小型流化床燃煤自供热煤催化气化特性研究[J]. 高校化学工程学报, 2013, 27(5): 798-804. |
Mao Y D , Li K Z , Sun Z Q , et al . Characteristics of catalytic coal gasification in lab scale auto thermal fluidized bed [J]. J. Chem. Eng. Chin. Univ., 2013, 27(5): 798-804. | |
5 | Hippo E J , Sheth A C . Mild catalytic steam gasification process: US2007/0000177 A1 [P]. 2007-01-04. |
6 | 毛燕东, 金亚丹, 王会芳, 等 . 煤催化气化工艺中碱金属腐蚀刚玉质耐火材料的实验研究[J]. 燃料化学学报, 2014, 42(11): 1332-1339. |
Mao Y D , Jin Y D , Wang H F , et al . Experimental research on corrosions of corundum refractory by alkali metals in catalytic coal gasification process [J]. J. Fuel Chem. Technol., 2014, 42(11): 1332-1339. | |
7 | 周明灿 . 煤制天然气产业发展及技术分析[J]. 化工设计, 2017, 27(6): 7-10. |
Zhou M C . Development of coal-based natural gas industry and technical analysis [J]. Chemical Engineering Design, 2017, 27(6): 7-10. | |
8 | 井云环 . 煤催化气化技术进展[J]. 当代化工, 2016, 45(6): 1273-1275. |
Jing Y H . Research progress of catalytic coal gasification technology [J]. Contemporary Chemical Industry, 2016, 45(6): 1273-1275. | |
9 | 王鹏飞, 王航, 崔龙鹏, 等 . 新一代煤气化技术展望[J]. 炼油技术与工程, 2014, 44(8): 1-5. |
Wang P F , Wang H , Cui L P , et al . Outlook of new generation coal gasification technologies [J]. Petroleum Refinery Engineering, 2014, 44(8): 1-5. | |
10 | Mao Y D , Jin Y D , Li K Z , et al . Sintering characteristic in catalytic gasification of China Inner Mongolia bituminous coal ash [J]. Energy Fuels, 2016, (30): 3975-3985. |
11 | Schmitt V , Kaltschmitt M . Effect of straw proportion and Ca and Al-containing additives on ash composition and sintering of woodstraw pellets[J]. Fuel, 2013, 109(7): 551-558. |
12 | Lin W , Johansen K D , Frandsen F . Agglomeration in bio-fuel fired fluidized bed combustors [J]. Chem. Eng. J., 2003, 96(2): 171-185. |
13 | 毛燕东, 金亚丹, 李克忠, 等 . 煤催化气化工艺中内蒙王家塔烟煤灰烧结温度的影响因素分析[J]. 化工学报, 2015, 66(3): 1080-1087. |
Mao Y D , Jin Y D , Li K Z , et al . Analysis of influencing factors on sintering temperature of Inner Mongolia Wangjiata bituminous coal ash during catalytic coal gasification [J]. CIESC Journal, 2015, 66(3): 1080-1087. | |
14 | Khan A , De J W , Jansens P , et al . Biomass combustion in fluidized bed boilers: potential problems and remedies [J]. Fuel Process Technol., 2009, 90(1): 21-50. |
15 | Demirbas A . Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues [J]. Prog. Energy Combust Sci., 2005, 31(2): 171-192. |
16 | Easterly J L , Burnham M .Overview of biomass and waste fuel resources for power production [J].Biomass Bioenergy, 1996, 10(2): 79-92. |
17 | Heinzel T , Siegle V , Spliethoff H , et al . Investigation of slagging in pulverized fuel co-combustion of biomass and coal at a pilot-scale test facility [J]. Fuel Process Technol., 1998, 54(1): 109-125. |
18 | Bartels M , Lin W G , Nijenhuis J , et al . Agglomeration in fluidized beds at high temperatures: mechanisms, detection and prevention [J]. Prog. Energy Combust. Sci., 2008, 34(5): 633-666. |
19 | Gupta S K , Gupta R P , Bryantg W , et al . The effect of potassium on the fusibility of coal ashes with high silica and alumina levels [J]. Fuel, 1998, 77(11): 1195-1201. |
20 | Al-Otoom A Y , Elliott L K , Moghtaderi B , et al . The sintering temperature of ash, agglomeration, and defluidisation in a bench scale PFBC [J]. Fuel, 2005, 84(1): 109-114. |
21 | Habibi R , Kopyscinski J , Masnadi M S , et al . Co-gasification of biomass and non-biomass feed stocks: synergistic and inhibition effects of switch grass mixed with sub-bituminous coal and fluid coke during CO2 gasification [J]. Energy Fuels, 2012, (27): 494-500. |
22 | Wang J , Sakanishi K , Saito I , et al . High-yield hydrogen production by steam gasification of hyper coal (ash-free coal extract) with potassium carbonate: comparison with raw coal [J]. Energy Fuels, 2005, (19): 2114-2120. |
23 | Jing N J , Wang Q H , Cheng L M , et al . The sintering behavior of coal ash under pressurized conditions [J]. Fuel, 2013, (103): 87-93. |
24 | 毛燕东, 金亚丹, 李克忠, 等 . 煤催化气化条件下不同煤种煤灰烧结行为研究[J]. 燃料化学学报, 2015, 43(4): 402-409. |
Mao Y D , Jin Y D , Li K Z , et al . Sintering behavior of different coal ashes in catalytic coal gasification process [J]. Journal of Fuel Chemistry and Technology, 2015, 43(4): 402-409. | |
25 | Zhang J G , Li J B , Mao Y D , et al . Effect of CaCO3 addition on ash sintering behaviour during K2CO3 catalysed steam gasification of a Chinese lignite [J]. Applied Thermal Engineering, 2017, (111): 503-509. |
26 | Jiang M Q , Zhou R , Hu J , et al . Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: influences of calcium species [J]. Fuel, 2012, (99): 64-71. |
27 | Jiang M , Hu J , Wang J . Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: effect of hydrothermal pretreatment [J]. Fuel, 2013, (109): 14-20. |
28 | Song W J , Tang L H , Zhu X D , et al . Effect of coal ash composition on ash fusion temperatures [J]. Energy Fuels, 2010, (24): 182-189. |
29 | Li F H , Huang J J , Fang Y T . Fusibility characteristics of residual ash from lignite fluidized-bed gasification to understand its formation [J]. Energy Fuels, 2012, (26): 5020-5027. |
30 | Jing N J , Wang Q H , Yang Y K , et al . Influence of ash composition on the sintering behavior during pressurized combustion and gasification process [J]. Appl. Phys. Eng., 2012, 13(3): 230-238. |
31 | Matjie R H , French D , Ward C R , et al . Behaviour of coal mineral matter in sintering and slagging of ash during the gasification process [J]. Fuel Process. Technol., 2011, (92): 1426-1433. |
32 | Zhang J G , Zhang L , Yang Z Q , et al . Effect of bauxite additives on ash sintering characteristics during the K2CO3-catalyzed steam gasification of lignite [J]. RSC Adv., 2015, (5): 6720-6727. |
33 | 姚奕竑 . 经钙基添加剂预处理煤碳酸钾催化气化研究[D]. 上海: 华东理工大学, 2008. |
Yao Y H . A study on potassium-carbonate-catalyzed coal gasification by pretreatment with calcium-based additions [D]. Shanghai: East China University of Science and Technology, 2008. | |
34 | 姜明泉 . 煤焦碱金属催化水蒸气气化-产氢行为和催化剂性能的研究[D]. 上海: 华东理工大学, 2012. |
Jiang M Q . The study on alkali-catalyzed gasification of coal char: behaviors of hydrogen production and performances of the catalysts [D]. Shanghai: East China University of Science and Technology, 2012. | |
35 | 王兴军, 陈凡敏, 刘海峰, 等 . 煤水蒸气气化过程中钾催化剂与矿物质的相互作用[J]. 燃料化学学报, 2013, 41(1): 9-13. |
Wang X J , Chen F M , Liu H F , et al . Interaction of potassium with mineral matter in coal during steam gasification [J]. Journal of Fuel Chemistry and Technology, 2013, 41(1): 9-13. |
[1] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[2] | 卢尚青, 吴素芳. 纳米CaCO3孔径调控及其对碳酸化反应性能的影响[J]. 化工学报, 2018, 69(6): 2753-2758. |
[3] | 陈兆辉, 刘雷, 金亚丹, 吴丽锋, 武恒, 湛月平, 李克忠, 毕继诚. 高灰熔点煤的加压催化气化:K2CO3催化活性及钾回收特性[J]. 化工学报, 2017, 68(5): 2155-2161. |
[4] | 毛燕东, 金亚丹, 李克忠, 毕继诚, 李金来, 辛峰. 煤催化气化工艺中内蒙王家塔烟煤灰烧结温度的影响因素分析[J]. CIESC Journal, 2015, 66(3): 1080-1087. |
[5] | 刘颖祖, 朱燕群, 马强, 徐超群, 王智化, 周俊虎, 岑可法. 臭氧多脱副产物亚硝酸钙的复盐沉淀试验研究[J]. 化工学报, 2014, 65(12): 4965-4970. |
[6] | 王俊格, 梁金花, 孙守飞, 张文飞, 任晓乾, 姜岷. 超声辅助制备酸碱双功能CaO/HMCM-22分子筛催化剂[J]. 化工学报, 2014, 65(10): 3924-3930. |
[7] | 张明明, 彭云湘, 汪瑾, 李平, 于建国. 三元复合钙基材料CaO-Ca3Al2O6-MgO的合成及其CO2吸附性能[J]. 化工学报, 2014, 65(1): 227-236. |
[8] | 何选明,方嘉淇,潘叶. Fe2O3/CaO对低阶煤低温催化干馏的影响[J]. 化工进展, 2014, 33(02): 363-367. |
[9] | 刘杨先, 潘剑锋, 刘勇. UV/H2O2氧化联合CaO吸收脱除NO的传质-反应动力学[J]. 化工学报, 2013, 64(3): 1062-1068. |
[10] | 李利军,崔 越,李青松,刘 焘,李彦青. 赤砂糖回溶糖浆的半碳法澄清脱色工艺[J]. 化工进展, 2013, 32(08): 1755-1758. |
[11] | 肖瑞瑞1,杨 伟1,于广锁2. 生物质半焦的催化气化动力学特性[J]. 化工进展, 2013, 32(02): 460-465. |
[12] | 陈彦1,2,张济宇1. 福建无烟煤Na2CO3催化气化过程的比表面变化特性[J]. 化工学报, 2012, 63(8): 2443-2452. |
[13] | 刘娇,孟范平,王震宇,刘启元. 亚甲基蓝光度法研究基于CaO2的Fenton反应条件 [J]. CIESC Journal, 2011, 62(9): 2520-2526. |
[14] | 周志杰, 熊杰, 展秀丽, 于广锁. 造纸黑液对石油焦-CO2气化的催化作用及动力学补偿效应 [J]. 化工学报, 2011, 62(4): 934-939. |
[15] | 李 梅1,2,吕鹏梅1,肖弥彰2,杨玲梅1,罗 文1. CaO基催化剂在制备生物柴油中的应用进展 [J]. CIESC Journal, 2010, 29(11): 2071-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||