化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1942-1950.DOI: 10.11949/j.issn.0438-1157.20181390
收稿日期:
2018-11-21
修回日期:
2019-01-10
出版日期:
2019-05-05
发布日期:
2019-05-05
通讯作者:
魏砾宏
作者简介:
魏砾宏(1975—),女,博士,教授,<email>weilihong@sau.edu.cn</email>
基金资助:
Lihong WEI1(),Liangzhen GUO1,Jinyuan JIANG2,Meijia LIU2,Tianhua YANG1
Received:
2018-11-21
Revised:
2019-01-10
Online:
2019-05-05
Published:
2019-05-05
Contact:
Lihong WEI
摘要:
选用污泥中典型氨基酸-甘氨酸(Gly)为研究对象,利用差式热值分析-质谱联用技术(DSC-MS)和固定床实验研究了Fe2O3对甘氨酸热解特性、NO x 前驱物生成规律以及氮转化特性的影响。结果表明:热解特性实验中,由于Fe2O3将Gly的第一热失重阶段一分为二,导致其热解过程由2个阶段增至3个;Fe2O3使Gly热解起始温度及气体析出温度降低50℃,并通过促进半焦的二次裂解反应使Gly失重率增加23%。与Fe2O3对Gly热解过程的影响一致,Fe2O3将含N气体析出过程同样分成3个独立的阶段。固定床实验中,在Fe2O3/N=0.5时,Fe2O3最大程度地抑制了NO x 前驱物(NH3和HCN)析出,使其减少30%。由于Fe2O3促进肽脱水缩合、环化和芳香化反应,使得更多P-N、N-5和N-6固定在半焦中,半焦氮残留率增加5%。
中图分类号:
魏砾宏, 郭良振, 蒋进元, 刘美佳, 杨天华. Fe2O3对甘氨酸热解特性及氮转化的影响[J]. 化工学报, 2019, 70(5): 1942-1950.
Lihong WEI, Liangzhen GUO, Jinyuan JIANG, Meijia LIU, Tianhua YANG. Influence of Fe2O3 on glycine pyrolysis characteristics and nitrogen conversion[J]. CIESC Journal, 2019, 70(5): 1942-1950.
样品编号 | T s/°C | T max/°C | T 1/2/°C | DTGmax/(%/min) | R v×108/(%/(min·℃3)) |
---|---|---|---|---|---|
Gly | 240 | 273 | 257.5 | 1.43 | 8.47 |
GF0.75 | 190 | 568.3 | 554.8 | 0.63 | 1.05 |
表1 样品的热解特性指数
Table 1 Pyrolysis characteristics index of samples
样品编号 | T s/°C | T max/°C | T 1/2/°C | DTGmax/(%/min) | R v×108/(%/(min·℃3)) |
---|---|---|---|---|---|
Gly | 240 | 273 | 257.5 | 1.43 | 8.47 |
GF0.75 | 190 | 568.3 | 554.8 | 0.63 | 1.05 |
气体 | Gly | GF0.75 | ||
---|---|---|---|---|
温度区间/℃ | 峰面积×109 | 温度区间/°C | 峰面积×109 | |
合计 | 0.10 | 0.57 | ||
NH3[border:border-top:solid;] | 250~402 | 69.5 | 191~309 | 61.6 |
— | — | 309~367 | 17.0 | |
— | — | 367~601 | 41.0 | |
合计 | 69.5 | 119.6 | ||
HCN[border:border-top:solid;] | 251~543 | 4.7 | 200~357 | 1.4 |
543~800 | 7.6 | 357~515 | 1.8 | |
— | — | 515~718 | 1.9 | |
合计 | 12.3 | 5.1 | ||
NO[border:border-top:solid;] | 250~359 | 0.9 | 192~359 | 3.6 |
359~575 | 1.1 | 359~533 | 3.0 | |
— | — | 533~635 | 1.0 | |
合计 | 2 | 7.6 | ||
HNCO[border:border-top:solid;] | 256~333 | 0.3 | 191~331 | 0.4 |
333~572 | 1.6 | 331~521 | 0.5 | |
572~794 | 0.8 | 521~631 | 0.3 | |
合计 | 2.7 | 1.2 | ||
NO2[border:border-top:solid;] | 247~375 | 0.10 | 190~327 | 0.19 |
— | — | 327~520 | 0.25 | |
— | — | 520~618 | 0.13 |
表2 含N气体析出温度区间及峰面积
Table 2 Temperature range and area of N-containing gas precipitation peak
气体 | Gly | GF0.75 | ||
---|---|---|---|---|
温度区间/℃ | 峰面积×109 | 温度区间/°C | 峰面积×109 | |
合计 | 0.10 | 0.57 | ||
NH3[border:border-top:solid;] | 250~402 | 69.5 | 191~309 | 61.6 |
— | — | 309~367 | 17.0 | |
— | — | 367~601 | 41.0 | |
合计 | 69.5 | 119.6 | ||
HCN[border:border-top:solid;] | 251~543 | 4.7 | 200~357 | 1.4 |
543~800 | 7.6 | 357~515 | 1.8 | |
— | — | 515~718 | 1.9 | |
合计 | 12.3 | 5.1 | ||
NO[border:border-top:solid;] | 250~359 | 0.9 | 192~359 | 3.6 |
359~575 | 1.1 | 359~533 | 3.0 | |
— | — | 533~635 | 1.0 | |
合计 | 2 | 7.6 | ||
HNCO[border:border-top:solid;] | 256~333 | 0.3 | 191~331 | 0.4 |
333~572 | 1.6 | 331~521 | 0.5 | |
572~794 | 0.8 | 521~631 | 0.3 | |
合计 | 2.7 | 1.2 | ||
NO2[border:border-top:solid;] | 247~375 | 0.10 | 190~327 | 0.19 |
— | — | 327~520 | 0.25 | |
— | — | 520~618 | 0.13 |
1 | Yang J K , Xu X , Liang S , et al . Enhanced hydrogen production in catalytic pyrolysis of sewage sludge by red mud: thermogravimetric kinetic analysis and pyrolysis characteristics[J]. International Journal of Hydrogen Energy, 2018, 43(16): 7795-7807. |
2 | Zhu J J , Yang Y , Yang L , et al . High quality syngas produced from the co-pyrolysis of wet sewage sludge with sawdust[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5463-5472. |
3 | Tang S Q , Zheng C M , Yan F , et al . Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals[J]. Energy, 2018, 153: 921-932. |
4 | Wei F , Cao J P , Zhao X Y , et al . Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge: a study of sewage sludge and model amino acids[J]. Fuel, 2018, 218: 148-154. |
5 | Ahlberg G , Gustafsson O , Wedel P . Leaching of metals from sewage sludge during one year and their relationship to particle size[J]. Environmental Pollution, 2006, 144(2): 545-553. |
6 | Fytili D , Zabaniotou A . Utilization of sewage sludge in EU application of old and new methods—a review[J]. Renewable & Sustainable Energy Reviews, 2008, 12(1): 116-140. |
7 | Liu T T , Liu Z G , Zheng Q F , et al . Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis[J]. Bioresource Technology, 2018, 247: 282-290. |
8 | Wei F , Cao J P , Zhao X Y , et al . Nitrogen evolution during fast pyrolysis of sewage sludge under inert and reductive atmospheres[J]. Energy & Fuel, 2017, 31(7): 7191-7196. |
9 | Ko J H , Wang J C , Xu Q Y . Characterization of particulate matter formed during sewage sludge pyrolysis[J]. Fuel, 2018, 224: 210-218. |
10 | 侯封校, 金晶, 林郁郁, 等 . Fe2O3对污泥热解特性及部分NO x 前驱物转化规律的影响[J]. 燃烧科学与技术, 2017, 23(1): 90-95. |
Hou F X , Jin J , Lin Y Y , et al . Influence of Fe2O3 on sludge pyrolysis characteristics and partial transformation mechanisms of NO x precursors[J]. Journal of Combustion Science and Technology, 2017, 23(1): 90-95. | |
11 | Wei L H , Wen L N , Yang T H , et al . Nitrogen transformation during sewage sludge pyrolysis[J]. Energy & Fuels, 2015, 29(8): 5088-5094. |
12 | Wei L H , Wen L N , Liu M J , et al . Interaction characteristics of mineral matter and nitrogen during sewage sludge pyrolysis[J]. Energy & Fuels, 2016, 30(12): 10505-10510. |
13 | 沈洪浩, 金晶, 林郁郁, 等 . CaO对大豆蛋白热解特性及NH3等含氮化合物释放的影响[J]. 化工进展, 2016, 35(7): 2263-3367. |
Shen H H , Jin J , Lin Y Y , et al . Influence of CaO on soybean protein pyrolysis characteristics and NH3 and other nitrogenous compounds release[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2263-2267. | |
14 | Liu H , Zhang Q , Hu H Y , et al . Catalytic role of conditioner CaO in nitrogen transformation during sewage sludge pyrolysis[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2759-2766. |
15 | Ren Q Q , Zhao C S . NO x and N2O precursors (NH3 and HCN) from biomass pyrolysis: interaction between amino acid and mineral matter[J]. Applied Energy, 2013, 112(4): 170-174. |
16 | Zhang J , Tian Y , Cui Y N , et al . Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: a protein model compound study[J]. Bioresource Technology, 2013, 132(2): 57-63. |
17 | Liu G Y , Wright M M , Zhao Q L , et al . Catalytic pyrolysis of amino acids: comparison of aliphatic amino acid and cyclic amino acid[J]. Energy Conversion & Management, 2016, 112: 220-225. |
18 | Chen H P , Si Y H , Chen Y Q , et al . NO x precursors from biomass pyrolysis: distribution of amino acids in biomass and tar-N during devolatilization using model compounds[J]. Fuel, 2017, 187: 367-375. |
19 | Sharma R K , Chan W G , Wang J , et al . On the role of peptides in the pyrolysis of amino acids[J]. Journal of Analytical & Applied Pyrolysis, 2004, 72(1): 153-163. |
20 | Yi L L , Liu H , Lu G , et al . Effect of mixed Fe/Ca additives on nitrogen transformation during protein and amino acid pyrolysis[J]. Energy & Fuels, 2017, 31(9): 9484-9490. |
21 | 王兴栋, 李春星, 尤甫天, 等 . 污泥水热处理过程中氮元素的迁移转化[J]. 化工学报, 2018, 69(6): 2688-2696. |
Wang X D , Li C X , You F T , et al . Migration and transformation of nitrogen in sewage sludge during hydrothermal treatment[J]. CIESC Journal, 2018, 69(6): 2688-2696. | |
22 | Huang W W , Yuan T , Zhao Z W , et al . Coupling hydrothermal treatment with stripping technology for fast ammonia release and effective nitrogen recovery from chicken manure [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 3704-3711. |
23 | Tsubouchi N , Hashimoto H , Ohtsuka Y . High catalytic performance of fine particles of metallic iron formed from limonite in the decomposition of a low concentration of ammonia[J]. Catalysis Letters, 2005, 105(3/4): 203-208. |
24 | Ratcliff M A , Medley E E , Simmonds P G . Pyrolysis of amino acids mechanistic considerations[J]. Journal of Organic Chemistry, 1974, 5(40): 1841. |
25 | Cao J P , Zhao X Y , Morishita K , et al . Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge[J]. Bioresource Technology, 2010, 101(19): 7648-7652. |
26 | 郭明山, 金晶, 刘敦禹, 等 . 添加木质素对污泥热解过程氮转化的影响[J]. 化工学报, 2017, 68(4): 1590-1599. |
Guo M S , Jin J , Liu D Y , et al . Effect of lignin on nitrogen transformation during pyrolysis of sewage sludge[J]. CIESC Journal, 2017, 68(4): 1590-1599. | |
27 | Tian K , Liu W J , Qian T T , et al . Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge[J]. Environmental Science & Technology, 2014, 48(18): 10888-10896. |
28 | 车得福 . 煤氮热变迁与氮氧化物生成[M]. 西安: 西安交通大学出版社, 2013. |
Che D F . Thermal Coal-N Transformation and Nitrogen Oxide Generation[M]. Xi’an: Xi’an Jiaotong University Press, 2013. | |
29 | 李尚, 金晶, 林郁郁, 等 . 准东煤与污泥共热解过程中NO x 前驱物释放规律[J]. 化工学报, 2017, 68(5): 2089-2095. |
Li S , Jin J , Lin Y Y , et al . Release of NO x precursors in co-pyrolysis process of Zhun Dong coal mixed with sludge[J]. CIESC Journal, 2017, 68(5): 2089-2095. | |
30 | Ohtsuka Y , Xu C B , Kong D P , et al . Decomposition of ammonia with iron and calcium catalysts supported on coal chars[J]. Fuel, 2004, 83(6): 685-692. |
[1] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[2] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[3] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[4] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[5] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[8] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[9] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[10] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[11] | 王荣, 王永洪, 张新儒, 李晋平. 6FDA型聚酰亚胺炭分子筛气体分离膜的构筑及其应用[J]. 化工学报, 2023, 74(4): 1433-1445. |
[12] | 王倩倩, 刘明言, 马永丽. 水中超声波脱气的效应研究[J]. 化工学报, 2023, 74(4): 1693-1702. |
[13] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[14] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[15] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 165
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 474
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||