化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4365-4378.DOI: 10.11949/0438-1157.20200445
刘文英1(),巨晓洁1,2,谢锐1,2,汪伟1,2,刘壮1,2,褚良银1,2()
收稿日期:
2020-04-29
修回日期:
2020-05-18
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
褚良银
作者简介:
刘文英(1993—),女,博士研究生,基金资助:
Wenying LIU1(),Xiaojie JU1,2,Rui XIE1,2,Wei WANG1,2,Zhuang LIU1,2,Liangyin CHU1,2()
Received:
2020-04-29
Revised:
2020-05-18
Online:
2020-10-05
Published:
2020-10-05
Contact:
Liangyin CHU
摘要:
胶囊膜作为一种封装系统,由于具有独特的内部空腔结构,能够对活性物质进行封装保护而广泛应用于物质封装和药物控制释放等领域。其中,以海藻酸钙(Ca-Alg)作为壁材构建的胶囊膜具有优异的生物相容性和可降解性。共挤出流体法由于具有制备过程简单、条件温和、胶囊粒径均一以及结构和功能可控等特点,为Ca-Alg胶囊膜的制备提供了一种有效的新手段。主要综述了近年来基于共挤出流体法构建Ca-Alg胶囊膜及其功能化的研究进展,重点介绍了基于共挤出流体法构建单腔室和多腔室胶囊膜、胶囊膜的跨膜传质影响因素,以及利用胶囊膜包埋细胞构建研究肿瘤变化机制的模型和利用功能性材料实现胶囊膜的功能化改性及其应用等方面的研究进展。
中图分类号:
刘文英, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 共挤出流体法制备功能化胶囊膜的研究进展[J]. 化工学报, 2020, 71(10): 4365-4378.
Wenying LIU, Xiaojie JU, Rui XIE, Wei WANG, Zhuang LIU, Liangyin CHU. Recent progress in preparation of functional capsule membranes based on co-extrusion minifluidic technique[J]. CIESC Journal, 2020, 71(10): 4365-4378.
1 | Agu R U, Ugwoke M I, Armand M, et al. The lung as a route for systemic delivery of therapeutic proteins and peptides[J]. Respir. Res., 2001, 2(4): 198-209. |
2 | Thote A J, Gupta R B. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release[J]. Nanomedicine, 2005, 1(1): 85-90. |
3 | Mu X T, Ju X J, Zhang L, et al. Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs[J]. J. Membr. Sci., 2019, 590: 117275. |
4 | Mei L, He F, Zhou R Q, et al. Novel intestinal-targeted Ca-alginate-based carrier for pH-responsive protection and release of lactic acid bacteria[J]. ACS Appl. Mater. Interfaces, 2014, 6(8): 5962-5970. |
5 | Hertzberg S, Kvittingen L, Anthonsen T, et al. Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: application in lipase-catalysed reactions[J]. Enzyme Microb. Technol., 1992, 14(1): 42-47. |
6 | Mei L, Xie R, Yang C, et al. Bio-inspired mini-eggs with pH-responsive membrane for enzyme immobilization[J]. J. Membr. Sci., 2013, 429: 313-322. |
7 | Wang J Y, Yu H R, Xie R, et al. Alginate/protamine/silica hybrid capsules with ultrathin membranes for laccase immobilization[J]. AIChE J., 2013, 59(2): 380-389. |
8 | Pan X, Mercadé-Prieto R, York D, et al. Structure and mechanical properties of consumer-friendly PMMA microcapsules[J]. Ind. Eng. Chem. Res., 2013, 52(33): 11253-11265. |
9 | Long Y, Vincent B, York D, et al. Organic-inorganic double shell composite microcapsules[J]. Chem. Commun., 2010, 46(10): 1718-1720. |
10 | Teixeira M A, Rodríguez O, Rodrigues S, et al. A case study of product engineering: performance of microencapsulated perfumes on textile applications[J]. AIChE J., 2012, 58(6): 1939-1950. |
11 | Mou C L, Wang W, Li Z L, et al. Trojan-horse-like stimuli-responsive microcapsules[J]. Adv. Sci., 2018, 5(6): 1700960. |
12 | Rao W, Zhao S, Yu J, et al. Enhanced enrichment of prostate cancer stem-like cells with miniaturized 3D culture in liquid core-hydrogel shell microcapsules[J]. Biomaterials, 2014, 35(27): 7762-7773. |
13 | Lee K Y, Mooney D J. Alginate: properties and biomedical applications[J]. Prog. Polym. Sci., 2012, 37(1): 106-126. |
14 | Lin Y H, Liang H F, Chung C K, et al. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs[J]. Biomaterials, 2005, 26(14): 2105-2113. |
15 | Zhao S, Agarwal P, Rao W, et al. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells[J]. Integr. Biol., 2014, 6(9): 874-884. |
16 | Moghaddam M K, Mortazavi S M, Khayamian T. Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method[J]. J. Electrost., 2015, 73: 56-64. |
17 | Martins E, Poncelet D, Renard D. A novel method of oil encapsulation in core-shell alginate microcapsules by dispersion-inverse gelation technique[J]. React. Funct. Polym., 2017, 114: 49-57. |
18 | Liu L, Wu F, Ju X J, et al. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions[J]. J. Colloid Interface Sci., 2013, 404: 85-90. |
19 | Ren P W, Ju X J, Xie R, et al. Monodisperse alginate microcapsules with oil core generated from a microfluidic device[J]. J. Colloid Interface Sci., 2010, 343(1): 392-395. |
20 | Ben Messaoud G, Sánchez-González L, Probst L, et al. Influence of internal composition on physicochemical properties of alginate aqueous-core capsules[J]. J. Colloid Interface Sci., 2016, 469: 120-128. |
21 | Jiang Z Y, Zhang Y F, Li J, et al. Encapsulation of beta-glucuronidase in biomimetic alginate capsules for bioconversion of baicalin to baicalein[J]. Ind. Eng. Chem. Res., 2007, 46(7): 1883-1890. |
22 | Bremond N, Santanach-Carreras E, Chu L Y, et al. Formation of liquid-core capsules having a thin hydrogel membrane: liquid pearls[J]. Soft Matter., 2010, 6: 2484-2488. |
23 | Rolland L, Santanach-Carreras E, Delmas T, et al. Physicochemical properties of aqueous core hydrogel capsules[J]. Soft Matter., 2014, 10(48): 9668-9674. |
24 | Liang W G, Yang C, Wen G Q, et al. A facile and controllable method to encapsulate phase change materials with non-toxic and biocompatible chemicals[J]. Appl. Therm. Eng., 2014, 70(1): 817-826. |
25 | Wang J Y, Jin Y, Xie R, et al. Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane[J]. J. Colloid Interface Sci., 2011, 353(1): 61-68. |
26 | Huang L Y, Wu K, Zhang R, et al. Fabrication of multicore milli- and microcapsules for controlling hydrophobic drugs release using a facile approach[J]. Ind. Eng. Chem. Res., 2019, 58(36): 17017-17026. |
27 | Phawaphuthanon N, Behnam S, Koo S Y, et al. Characterization of core-shell calcium-alginate macrocapsules fabricated by electro-coextrusion[J]. Int. J. Biol. Macromol., 2014, 65: 267-274. |
28 | Ngamnikom P, Phawaphuthanon N, Kim M, et al. Fabrication of core-shell structured macrocapsules by electro-coextrusion with agar-hydrocolloid mixtures for precooked food applications: textural and release characteristics[J]. Int. J. Food Sci. Technol., 2017, 52(12): 2538-2546. |
29 | Poncelet D, Neufeld R J, Goosen M F A, et al. Formation of microgel beads by electric dispersion of polymer solutions[J]. AIChE J., 1999, 45(9): 2018-2023. |
30 | Li J, Zhang P. Formation and droplet size of EHD drippings induced by superimposing an electric pulse to background voltage[J]. J. Electrost., 2009, 67(4): 562-567. |
31 | Liao S L, He Y L, Wang D G, et al. Dynamic interfacial printing for monodisperse droplets and polymeric microparticles[J]. Adv. Mater. Technol., 2016, 1(1): 1600021. |
32 | Valet M, Pontani L L, Prevost A M, et al. Quasistatic microdroplet production in a capillary trap[J]. Phys. Rev. Appl., 2018, 9(1): 014002. |
33 | Xu P, Zheng X, Tao Y, et al. Cross-interface emulsification for generating size-tunable droplets[J]. Anal. Chem., 2016, 88(6): 3171-3177. |
34 | Liao S, Tao Y, Du W, et al. Interfacial emulsification: an emerging monodisperse droplet generation method for microreactors and bioanalysis[J]. Langmuir, 2018, 34(39): 11655-11666. |
35 | Huang F S, Niu Y, Zhu Z Q, et al. Oblique interface shearing (OIS): single-step microdroplet generation and on-demand positioning[J]. Soft Matter., 2019, 15: 4782-4786. |
36 | Zhu Z, Huang F, Yang C, et al. On-demand generation of double emulsions based on interface shearing for controlled ultrasound activation[J]. ACS Appl. Mater. Interfaces, 2019, 11(43): 40932-40943. |
37 | Hu Y, Xu P, Luo J, et al. Absolute quantification of H5-subtype avian influenza viruses using droplet digital loop-mediated isothermal amplification[J]. Anal. Chem., 2017, 89(1): 745-750. |
38 | Liao S L, Tao X L, Ju Y J, et al. Multichannel dynamic interfacial printing: an alternative multicomponent droplet generation technique for lab in a drop[J]. ACS Appl. Mater. Interfaces, 2017, 9(50): 43545-43552. |
39 | Wang W, Jones T B, Harding D R. On-chip double emulsion droplet assembly using electrowetting-on-dielectric and dielectrophoresis[J]. Fusion Sci. Technol., 2017, 59(1): 240-249. |
40 | Kim H, Kim J. A microfluidic-based dynamic microarray system with single-layer pneumatic valves for immobilization and selective retrieval of single microbeads[J]. Microfluid. Nanofluid., 2014, 16: 623-633. |
41 | Li M, Van Zee M, Goda K, et al. Size-based sorting of hydrogel droplets using inertial microfluidics[J]. Lab Chip, 2018, 18(17): 2575-2582. |
42 | Huang L R, Cox E C, Austin R H, et al. Continuous particle separation through deterministic lateral displacement[J]. Science, 2004, 304: 987-990. |
43 | Kuntaegowdanahalli S S, Bhagat A A, Kumar G, et al. Inertial microfluidics for continuous particle separation in spiral microchannels[J]. Lab Chip, 2009, 9(20): 2973-2980. |
44 | Huang F S, Zhu Z Q, Niu Y, et al. Coaxial oblique interface shearing: tunable generation and sorting of double emulsions for spatial gradient drug release[J]. Lab Chip, 2020, 20(7): 1249-1258. |
45 | Villar G, Heron A J, Bayley H. Formation of droplet networks that function in aqueous environments[J]. Nat. Nanotechnol., 2011, 6(12): 803-808. |
46 | Johnston A P R, Such G K, Caruso F. Triggering release of encapsulated cargo[J]. Angew. Chem. Int. Ed., 2010, 49(15): 2664-2666. |
47 | de Hoog H P M, Nallani M, Tomczak N. Self-assembled architectures with multiple aqueous compartments[J]. Soft Matter., 2012, 8(17): 4552-4561. |
48 | Sun B J, Shum H C, Holtze C, et al. Microfluidic melt emulsification for encapsulation and release of actives[J]. ACS Appl. Mater. Interfaces, 2010, 2(12): 3411-3416. |
49 | Kisak E T, Coldren B, Evans C A, et al. The vesosome — a multicompartment drug delivery vehicle[J]. Curr. Med. Chem., 2004, 11(2): 199-219. |
50 | Peters R J R W, Marguet M, Marais S, et al. Cascade reactions in multicompartmentalized polymersomes[J]. Angew. Chem. Int. Ed., 2014, 53(1): 146-150. |
51 | Huang X, Voit B. Progress on multi-compartment polymeric capsules[J]. Polym. Chem., 2013, 4(3): 435-443. |
52 | Kreft O, Prevot M, Mohwald H, et al. Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions[J]. Angew. Chem. Int. Ed., 2007, 46(29): 5605-5608. |
53 | Kreft O, Skirtach A G, Sukhorukov G B, et al. Remote control of bioreactions in multicompartment capsules[J]. Adv. Mater., 2007, 19(20): 3142-3145. |
54 | Elani Y, Gee A, Law R V, et al. Engineering multi-compartment vesicle networks[J]. Chem. Sci., 2013, 4(8): 3332-3338. |
55 | Elani Y, Law R V, Ces O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways[J]. Nat. Commun., 2014, 5, 5305. |
56 | Wang W, Xie R, Ju X J, et al. Controllable microfluidic production of multicomponent multiple emulsions[J]. Lab Chip, 2011, 11(9): 1587-1592. |
57 | Wang W, Luo T, Ju X J, et al. Microfluidic preparation of multicompartment microcapsules for isolated co-encapsulation and controlled release of diverse components[J]. Int. J. Nonlinear Sci. Numer. Simul., 2012, 13: 325-332. |
58 | Shum H C, Zhao Y J, Kim S H, et al. Multicompartment polymersomes from double emulsions[J]. Angew. Chem. Int. Ed., 2011, 50(7): 1648-1651. |
59 | Windbergs M, Zhao Y J, Heyman J, et al. Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives[J]. J. Am. Chem. Soc., 2013, 135(21): 7933-7937. |
60 | He F, Wang W, He X H, et al. Controllable multicompartmental capsules with distinct cores and shells for synergistic release[J]. ACS Appl. Mater. Interfaces, 2016, 8(13): 8743-8754. |
61 | 何帆. 用于物质包封及pH响应性控制释放的微胶囊的制备与性能研究[D]. 成都: 四川大学, 2018. |
He F. Preparation and performance of capsules for encapsulation and pH-responsive controlled release[D]. Chengdu: Sichuan University, 2018. | |
62 | Davarcı F, Turan D, Ozcelik B, et al. The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique[J]. Food Hydrocolloids, 2017, 62: 119-127. |
63 | Lee B B, Ibrahim R, Chu S Y, et al. Alginate liquid core capsule formation using the simple extrusion dripping method[J]. J. Polym. Eng., 2015, 35(4): 311-318. |
64 | Zhao Y Y, Hu F P, Evans J J, et al. Study of sol-gel transition in calcium alginate system by population balance model[J]. Chem. Eng. Sci., 2011, 66(5): 848-858. |
65 | Blandino A, Macias M, Cantero D. Formation of calcium alginate gel capsules: influence of sodium alginate and CaCl2 concentration on gelation kinetics[J]. Biosci. Bioeng., 1999, 88(6): 686-689. |
66 | Hecht H, Srebnik S. Structural characterization of sodium alginate and calcium alginate[J]. Biomacromolecules, 2016, 17(6): 2160-2167. |
67 | Kim J B, Stein R, O'hare M J. Three-dimensional in vitro tissue culture models of breast cancer—a review[J]. Breast Cancer Res. Treat., 2004, 85(3): 281-291. |
68 | Lee M Y, Kumar R A, Sukumaran S M, et al. Three-dimensional cellular microarray for high-throughput toxicology assays[J]. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(1): 59-63. |
69 | Lee K H, No D Y, Kim S H, et al. Diffusion-mediated in situ alginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane[J]. Lab Chip, 2011, 11(6): 1168-1173. |
70 | Chen M C, Gupta C M, Cheung K C. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening[J]. Biomed. Microdevices, 2010, 12(4): 647-654. |
71 | Kim C, Chung S, Kim Y E, et al. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid[J]. Lab Chip, 2011, 11(2): 246-252. |
72 | Alessandri K, Sarangi B R, Gurchenkov V V, et al. Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro[J]. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(37): 14843-14848. |
73 | He F, Mei L, Ju X J, et al. pH-responsive controlled release characteristics of solutes with different molecular weights diffusing across membranes of Ca-alginate/protamine/silica hybrid capsules[J]. J. Membr. Sci., 2015, 474: 233-243. |
74 | Mei L, Xie R, Yang C, et al. pH-responsive Ca-alginate-based capsule membranes with grafted poly(methacrylic acid) brushes for controllable enzyme reaction[J]. Chem. Eng. J., 2013, 232: 573-581. |
75 | Andrique L, Recher G, Alessandri K, et al. A model of guided cell self-organization for rapid and spontaneous formation of functional vessels[J]. Sci. Adv., 2019, 5: eaau6562. |
[1] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[2] | 马嘉壮, 陈颖, 李凯涛, 林彦军. 镁基插层结构功能材料研究进展[J]. 化工学报, 2021, 72(6): 2922-2933. |
[3] | 温霜, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 肠靶向海藻酸钙基微胶囊的制备及控释性能研究[J]. 化工学报, 2020, 71(8): 3797-3806. |
[4] | 朱文会, 王夏晖, 杨欣桐, 王兴润, 何俊, 黄国鑫, 季国华. 海藻酸钙固定化零价铁抗团聚及堵塞的作用机制[J]. 化工学报, 2020, 71(5): 2344-2351. |
[5] | 王伟浩, 杨鑫, 李飞, 孙梦梦, 王垚磊, 孟涛. 载酶海藻酸钙复合微球稳定水包油型Pickering乳液及其强化界面酶催化反应[J]. 化工学报, 2019, 70(12): 4777-4786. |
[6] | 蔡泉威, 巨晓洁, 谢锐, 汪伟, 刘壮, 褚良银. 微流控技术可控制备异形微颗粒功能材料的研究进展[J]. 化工学报, 2019, 70(10): 3738-3747. |
[7] | 雷明月, 颜超, 崔莉, 张传杰, 刘云, 王怀芳, 朱平. 海藻酸钙纤维非织造布的水凝胶化改性及机理[J]. 化工学报, 2018, 69(4): 1765-1773. |
[8] | 安莲英, 张春霞, 黄献奖. 磷钨酸铵-海藻酸钙复合吸附剂的制备及其铷吸附热力学及动力学[J]. 化工学报, 2016, 67(4): 1378-1385. |
[9] | 何帆, 谢锐, 巨晓洁, 汪伟, 刘壮, 褚良银. 超薄壁结构海藻酸钙胶囊膜制备及其功能化研究新进展[J]. 化工学报, 2015, 66(8): 2817-2823. |
[10] | 褚良银,汪伟,巨晓洁,谢锐. 微流控法构建微尺度相界面及制备新型功能材料研究进展[J]. 化工进展, 2014, 33(09): 2229-2234. |
[11] | 高 伟,辛梅华,李明春,李 莉,邱 枫. 双酰肼类化合物的应用研究进展 [J]. CIESC Journal, 2009, 28(5): 882-. |
[12] | 吴 雪,辛 忠,袁渭康. 基于磷酰胆碱有效基团的功能材料的结构及生化特性 [J]. CIESC Journal, 2008, 27(9): 1375-. |
[13] | 李 欣,ZHANG Zhibing,PREECE J.,陈立仁. 金纳米微粒修饰几丁聚糖微胶囊新方法 [J]. CIESC Journal, 2008, 27(11): 1836-. |
[14] | 张晓乐, 侯丽雅, 章维一. 微胶囊的微流体数字化技术制备方法及实验装置 [J]. 化工学报, 2007, 58(8): 2133-2137. |
[15] | 王宏智, 姚素薇, 张卫国. Ni-W纳米结构梯度镀层耐热及高温氧化性能 [J]. 化工学报, 2003, 54(2): 237-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||