化工学报 ›› 2023, Vol. 74 ›› Issue (9): 3615-3627.DOI: 10.11949/0438-1157.20230529
车睿敏1,2(), 郑文秋1,2, 王小宇1,2, 李鑫1,2(), 许凤1,2()
收稿日期:
2023-05-31
修回日期:
2023-09-01
出版日期:
2023-09-25
发布日期:
2023-11-20
通讯作者:
李鑫,许凤
作者简介:
车睿敏(2000—),男,硕士研究生,bfucrm2000@bjfu.edu.cn
基金资助:
Ruimin CHE1,2(), Wenqiu ZHENG1,2, Xiaoyu WANG1,2, Xin LI1,2(), Feng XU1,2()
Received:
2023-05-31
Revised:
2023-09-01
Online:
2023-09-25
Published:
2023-11-20
Contact:
Xin LI, Feng XU
摘要:
纤维素是自然界中储量最丰富的可再生资源,是制备经济可持续聚合物的理想材料。由于天然纤维素具有高度结晶的聚集态结构及分子链间致密的氢键网络,导致其溶解与加工困难,功能化应用受到了极大限制。近年来,离子液体作为新型绿色纤维素溶剂体系蓬勃发展,为纤维素均相加工与高效利用提供了崭新的平台。从离子液体种类、特性及溶解纤维素能力,基于“溶解再生”与“均相衍生”构建纤维素材料等方面综述了近年来纤维素在离子液体中均相加工的最新研究进展,为未来纤维素资源的绿色高值转化提供参考。
中图分类号:
车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627.
Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids[J]. CIESC Journal, 2023, 74(9): 3615-3627.
1 | Medronho B, Lindman B. Competing forces during cellulose dissolution: from solvents to mechanisms[J]. Current Opinion in Colloid & Interface Science, 2014, 19(1): 32-40. |
2 | 吕玉苗, 陈伟, 王艳磊, 等. 离子液体二维结构制备及其特性研究进展[J]. 化学学报, 2021, 79(4): 443-458. |
Lyu Y M, Chen W, Wang Y L, et al. Research progress on the preparation and properties of two dimensional structure of ionic liquids[J]. Acta Chimica Sinica, 2021, 79(4): 443-458. | |
3 | Chum H L, Koch V R, Miller L L, et al. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt[J]. Journal of the American Chemical Society, 1975, 97(11): 3264-3265. |
4 | Wilkes J S, Levisky J A, Wilson R A, et al. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis[J]. Inorganic Chemistry, 1982, 21(3): 1263-1264. |
5 | Nikfarjam N, Ghomi M, Agarwal T, et al. Antimicrobial ionic liquid-based materials for biomedical applications[J]. Advanced Functional Materials, 2021, 31(42): 2104148. |
6 | El Seoud O A, Kostag M, Jedvert K, et al. Cellulose regeneration and chemical recycling: closing the “cellulose gap” using environmentally benign solvents[J]. Macromolecular Materials and Engineering, 2020, 305(4): 1900832. |
7 | Zhang S J, Sun N, He X Z, et al. Physical properties of ionic liquids: database and evaluation[J]. Journal of Physical and Chemical Reference Data, 2006, 35(4): 1475-1517. |
8 | Karu K, Elhi F, Põhako-Esko K, et al. Predicting melting points of biofriendly choline-based ionic liquids with molecular dynamics[J]. Applied Sciences, 2019, 9(24): 5367. |
9 | Gharagheizi F, Ilani-Kashkouli P, Mohammadi A H. Group contribution model for estimation of surface tension of ionic liquids[J]. Chemical Engineering Science, 2012, 78: 204-208. |
10 | Arjmand F, Aghaie H, Bahadori M, et al. Surface tension investigation of ionic liquids by using the Pseudolattice theory[J]. Journal of Molecular Liquids, 2019, 277: 80-83. |
11 | Boruń A. Conductance and ionic association of selected imidazolium ionic liquids in various solvents: a review[J]. Journal of Molecular Liquids, 2019, 276: 214-224. |
12 | Safarov J, Huseynova G, Bashirov M, et al. Viscosity of 1-ethyl-3-methylimidazolium methanesulfonate over a wide range of temperature and Vogel-Tamman-Fulcher model[J]. Physics and Chemistry of Liquids, 2018, 56(6): 703-717. |
13 | Seddon K R, Stark A, Torres M J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids[J]. Pure and Applied Chemistry, 2000, 72(12): 2275-2287. |
14 | Perrin C L, Agranat I, Bagno A, et al. Glossary of terms used in physical organic chemistry (IUPAC Recommendations 2021)[J]. Pure and Applied Chemistry, 2022, 94(4): 353-534. |
15 | Reichardt C. Solvatochromic dyes as solvent polarity indicators[J]. Chemical Reviews, 1994, 94(8): 2319-2358. |
16 | Thawarkar S, Khupse N D, Kumar A. Binary mixtures of aprotic and protic ionic liquids demonstrate synergistic polarity effect: an unusual observation[J]. Journal of Solution Chemistry, 2020, 49(2): 210-221. |
17 | Rabiul Islam M, Warsi F, Sayem Alam M, et al. Solvatochromic behaviour of coumarin 102 in PEGs + ionic liquid/water solutions: role of solute-solvent or solvent-solvent interactions[J]. Journal of Molecular Liquids, 2021, 334: 116483. |
18 | Spange S, Lienert C, Friebe N, et al. Complementary interpretation of ET(30) polarity parameters of ionic liquids[J]. Physical Chemistry Chemical Physics, 2020, 22(18): 9954-9966. |
19 | Xu A R, Wang F. Carboxylate ionic liquid solvent systems from 2006 to 2020: thermal properties and application in cellulose processing[J]. Green Chemistry, 2020, 22(22): 7622-7664. |
20 | Li X, Li H C, Ling Z, et al. Room-temperature superbase-derived ionic liquids with facile synthesis and low viscosity: powerful solvents for cellulose dissolution by destroying the cellulose aggregate structure[J]. Macromolecules, 2020, 53(9): 3284-3295. |
21 | Li X, Li H C, You T T, et al. Enhanced dissolution of cotton cellulose in 1-allyl-3-methylimidazolium chloride by the addition of metal chlorides[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19176-19184. |
22 | Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975. |
23 | Zhang H, Wu J, Zhang J, et al. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules, 2005, 38(20): 8272-8277. |
24 | Zhang J M, Zhang H, Wu J, et al. NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids[J]. Physical Chemistry Chemical Physics, 2010, 12(8): 1941-1947. |
25 | Xu A R, Chen L, Wang J J. Functionalized imidazalium carboxylates for enhancing practical applicability in cellulose processing[J]. Macromolecules, 2018, 51(11): 4158-4166. |
26 | Sixta H, Michud A, Hauru L, et al. Ioncell-F: a high-strength regenerated cellulose fibre[J]. Nordic Pulp & Paper Research Journal, 2015, 30(1): 43-57. |
27 | 付林林, 赵地顺, 任培兵, 等. 吡啶类离子液体的合成及对纤维素溶解性能的研究[J]. 现代化工, 2011, 31(9): 39-42. |
Fu L L, Zhao D S, Ren P B, et al. Synthesis of pyridinium-based ionic liquid and its dissolubility of cellulose[J]. Modern Chemical Industry, 2011, 31(9): 39-42. | |
28 | Raut D G, Sundman O, Su W Q, et al. A morpholinium ionic liquid for cellulose dissolution[J]. Carbohydrate Polymers, 2015, 130: 18-25. |
29 | Ren H, Zong M H, Wu H, et al. Efficient pretreatment of wheat straw using novel renewable cholinium ionic liquids to improve enzymatic saccharification[J]. Industrial & Engineering Chemistry Research, 2016, 55(6): 1788-1795. |
30 | Xu A R, Wang J J, Wang H Y. Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems[J]. Green Chemistry, 2010, 12(2): 268-275. |
31 | Minnick D L, Flores R A, DeStefano M R, et al. Cellulose solubility in ionic liquid mixtures: temperature, cosolvent, and antisolvent effects[J]. The Journal of Physical Chemistry B, 2016, 120(32): 7906-7919. |
32 | Meng Y H, Pang Z Q, Dong C H. Enhancing cellulose dissolution in ionic liquid by solid acid addition[J]. Carbohydrate Polymers, 2017, 163: 317-323. |
33 | Nawaz H, Pires P A R, Bioni T A, et al. Mixed solvents for cellulose derivatization under homogeneous conditions: kinetic, spectroscopic, and theoretical studies on the acetylation of the biopolymer in binary mixtures of an ionic liquid and molecular solvents[J]. Cellulose, 2014, 21(3): 1193-1204. |
34 | Li H L, Legere S, He Z B, et al. Methods to increase the reactivity of dissolving pulp in the viscose rayon production process: a review[J]. Cellulose, 2018, 25(7): 3733-3753. |
35 | Zhang S K, Chen C X, Duan C, et al. Regenerated cellulose by the Lyocell process, a brief review of the process and properties[J]. BioResources, 2018, 13(2): 4577-4592. |
36 | Eom W, Shin H, Ambade R B, et al. Large-scale wet-spinning of highly electroconductive MXene fibers[J]. Nature Communications, 2020, 11(1): 2825. |
37 | Liu W, Gao Y, Liu X, et al. Tensile and interfacial properties of dry-jet wet-spun and wet-spun polyacrylonitrile-based carbon fibers at cryogenic condition[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 1-8. |
38 | Dobrzański L, Nieradka B, Macek M, et al. Influence of the electrospinning parameters on the morphology of composite nanofibers[J]. Archives of Materials Science and Engineering, 2014, 69(1): 32-37. |
39 | Jiang Z M, Miao J J, Yu Y Q, et al. Effective preparation of bamboo cellulose fibers in quaternary ammonium/DMSO solvent[J]. BioResources, 2016, 11(2): 4536-4549. |
40 | Zhao C Y, Zhang C Y, Wang P, et al. Wet-spun PEDOT: PSS/ionic liquid composite fibers for wearable e-textiles[J]. European Polymer Journal, 2023, 190: 112025. |
41 | Hauru L K J, Hummel M, Michud A, et al. Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution[J]. Cellulose, 2014, 21(6): 4471-4481. |
42 | 郎玉玺, 张玥, 杨燕平. 离子液体/二甲基亚砜复合溶剂干喷湿纺制备再生纤维素纤维凝固工艺研究[J]. 人造纤维, 2017, 47(4): 2-6. |
Lang Y X, Zhang Y, Yang Y P. Study on coagulation process of regenerated cellulose fiber prepared by dry-jet wet spinning with ionic liquid/dimethyl sulfoxide composite solvent[J]. Artificial Fibre, 2017, 47(4): 2-6. | |
43 | Vocht M P, Beyer R, Thomasic P, et al. High-performance cellulosic filament fibers prepared via dry-jet wet spinning from ionic liquids[J]. Cellulose, 2021, 28(5): 3055-3067. |
44 | Ma Y, Hummel M, Määttänen M, et al. Upcycling of waste paper and cardboard to textiles[J]. Green Chemistry, 2016, 18(3): 858-866. |
45 | Trogen M, Le N D, Sawada D, et al. Cellulose-lignin composite fibres as precursors for carbon fibres (Part 1): Manufacturing and properties of precursor fibres[J]. Carbohydrate Polymers, 2021, 252: 117133. |
46 | 管山, 盖广清. 静电纺丝技术在各领域中的应用[J]. 化工技术与开发, 2022, 51(12): 57-60. |
Guan S, Gai G Q. Application of electrospinning technology in various fields[J]. Technology & Development of Chemical Industry, 2022, 51(12): 57-60. | |
47 | 于川力, 王经逸, 贾红兵, 等. 静电纺丝的应用研究进展[J]. 化工新型材料, 2022, 50(S1): 50-55. |
Yu C L, Wang J Y, Jia H B, et al. Application research of electrospinning [J]. New Chemical Materials, 2022, 50(S1): 50-55. | |
48 | Xu S S, Zhang J, He A H, et al. Electrospinning of native cellulose from nonvolatile solvent system[J]. Polymer, 2008, 49(12): 2911-2917. |
49 | Quan S L, Kang S G, Chin I J. Characterization of cellulose fibers electrospun using ionic liquid[J]. Cellulose, 2010, 17(2): 223-230. |
50 | 黄青武, 吴越, 宋武林, 等. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(S1): 164-168. |
Huang Q W, Wu Y, Song W L, et al. Electrospinning preparation and structural characterization of carbon fibers[J]. Materials Reports, 2020, 34(S1): 164-168. | |
51 | Su Y Q, Yang B, Liu J G, et al. Prospects for replacement of some plastics in packaging with lignocellulose materials: a brief review[J]. BioResources, 2018, 13(2): 4550-4576. |
52 | Liu N N, Li C, Zhang T C, et al. Fabrication of “plug and play” channels with dual responses by host-guest interactions[J]. Small, 2017, 13(4): 1600287. |
53 | Haq M A, Habu Y, Yamamoto K, et al. Ionic liquid induces flexibility and thermoplasticity in cellulose film[J]. Carbohydrate Polymers, 2019, 223: 115058. |
54 | Wittmar A S M, Fu Q, Ulbricht M. Photocatalytic and magnetic porous cellulose-based nanocomposite films prepared by a green method[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9858-9868. |
55 | Dong H L, Ling Z, Zhang X, et al. Smart colorimetric sensing films with high mechanical strength and hydrophobic properties for visual monitoring of shrimp and pork freshness[J]. Sensors and Actuators B: Chemical, 2020, 309: 127752. |
56 | Luo N, Varaprasad K, Reddy G V S, et al. Preparation and characterization of cellulose/curcumin composite films[J]. RSC Advances, 2012, 2(22): 8483-8488. |
57 | Kim Y, Song Y, Kim H. Preparation of transparent cellulose film with controlled haze using halloysite nanotubes[J]. Cellulose, 2018, 25(2): 1239-1248. |
58 | 王金霞, 刘温霞. 纤维素的化学改性[J]. 纸和造纸, 2011, 30(8): 31-37. |
Wang J X, Liu W X. Chemical modification of cellulose[J]. Paper and Paper Making, 2011, 30(8): 31-37. | |
59 | Li X, Li H C, You T T, et al. Fabrication of regenerated cellulose membranes with high tensile strength and antibacterial property via surface amination[J]. Industrial Crops and Products, 2019, 140: 111603. |
60 | Li X, Cheng P, Zhang J K, et al. Laminar regenerated cellulose membrane employed for high-performance photothermal-gating osmotic power harvesting[J]. Carbohydrate Polymers, 2022, 292: 119657. |
61 | Li H L, Kruteva M, Dulle M, et al. Understanding the drying behavior of regenerated cellulose gel beads: the effects of concentration and nonsolvents[J]. ACS Nano, 2022, 16(2): 2608-2620. |
62 | 崔烨璇, 仝雅娜, 刘伟东, 等. 纤维素基水凝胶的构建及其应用[J]. 材料工程, 2023, 51(9): 37-51. |
Cui Y X, Tong Y N, Liu W D, et al. Construction and application of cellulose-based hydrogel[J]. Journal of Materials Engineering, 2023, 51(9): 37-51. | |
63 | 黄明明, 陈斐然, 马浩, 等. 基于纤维素离子液体溶液制备纤维素水凝胶和干凝胶[J]. 化学研究与应用, 2013, 25(10): 1386-1391. |
Huang M M, Chen F R, Ma H, et al. Preparation of cellulose hydrogel and xerogel from its ionic liquid solution [J]. Chemical Research and Application, 2013, 25(10): 1386-1391. | |
64 | Kimura M, Shinohara Y, Takizawa J, et al. Versatile molding process for tough cellulose hydrogel materials[J]. Scientific Reports, 2015, 5(1): 16266. |
65 | Kikuchi K, Kaneko K, Fukaya R, et al. Influence of hydrostatic pressure during gelation on physicochemical properties of cellulose hydrogels prepared from ionic liquid/DMSO solution[J]. Journal of Molecular Liquids, 2023, 381: 121810. |
66 | Warsi Khan H, Moniruzzaman M, Mahmoud Elsayed Nasef M, et al. Ionic liquid assisted cellulose aerogels for cleaning an oil spill[J]. Materials Today: Proceedings, 2020, 31: 217-220. |
67 | Long L Y, Weng Y X, Wang Y Z. Cellulose aerogels: synthesis, applications, and prospects[J]. Polymers, 2018, 10(6): 623. |
68 | Mi Q Y, Ma S R, Yu J, et al. Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 656-660. |
69 | 余坚, 米勤勇, 袁斌, 等. 基于离子液体溶解-超临界干燥技术制备纤维素基气凝胶材料的研究进展[J]. 中国材料进展, 2019, 38(1): 42-48, 57. |
Yu J, Mi Q Y, Yuan B, et al. Progress on cellulose-based aerogels prepared via combing ionic liquids dissolving and supercritical drying technique[J]. Materials China, 2019, 38(1): 42-48, 57. | |
70 | Yuan B, Zhang J M, Mi Q Y, et al. Transparent cellulose-silica composite aerogels with excellent flame retardancy via an in situ sol-gel process[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 11117-11123. |
71 | 卢洪超, 夏钲豪, 米勤勇, 等. 凝固浴温度对再生纤维素材料结构与性能的影响研究[J]. 高分子学报, 2023, 54(7): 1064-1073. |
Lu H C, Xia Z H, Mi Q Y, et al. Effect of coagulation bath temperature on the structure and properties of regenerated cellulose materials[J]. Acta Polymerica Sinica, 2023, 54(7): 1064-1073. | |
72 | 刘禹豪, 覃俊, 何勇. 纤维素增塑改性及其熔融纺丝技术研究进展[J]. 纺织科技进展, 2021(6): 1-5. |
Liu Y H, Qin J, He Y. Research progress of cellulose plasticization and melt spinning[J]. Progress in Textile Science & Technology, 2021(6): 1-5. | |
73 | 卢江琴, 刘斐, 黄骏成, 等. 纤维素的酯化改性[J]. 中国材料进展, 2023, 42(9): 740-748. |
Lu J Q, Liu F, Huang J C, et al. Esterification of cellulose[J]. Rare Metals Letters, 2023, 42(9): 740-748. | |
74 | Wu J, Zhang J, Zhang H, et al. Homogeneous acetylation of cellulose in a new ionic liquid[J]. Biomacromolecules, 2004, 5(2): 266-268. |
75 | Kakko T, King A W T, Kilpeläinen I. Homogenous esterification of cellulose pulp in [DBNH][OAc][J]. Cellulose, 2017, 24(12): 5341-5354. |
76 | Yang Y L, Xie H B, Liu E H. Acylation of cellulose in reversible ionic liquids[J]. Green Chemistry, 2014, 16(6): 3018-3023. |
77 | Heinze T, Schwikal K, Barthel S. Ionic liquids as reaction medium in cellulose functionalization[J]. Macromolecular Bioscience, 2005, 5(6): 520-525. |
78 | Barthel S, Heinze T. Acylation and carbanilation of cellulose in ionic liquids[J]. Green Chemistry, 2006, 8(3): 301-306. |
79 | Heinze T, Dorn S, Schöbitz M, et al. Interactions of ionic liquids with polysaccharides(2): Cellulose[J]. Macromolecular Symposia, 2008, 262(1): 8-22. |
80 | Zhang J M, Chen W W, Feng Y, et al. Homogeneous esterification of cellulose in room temperature ionic liquids[J]. Polymer International, 2015, 64(8): 963-970. |
81 | Chen Z Y, Zhang J M, Xiao P, et al. Novel thermoplastic cellulose esters containing bulky moieties and soft segments[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4931-4939. |
82 | Schurz J. A bright future for cellulose[J]. Progress in Polymer Science, 1999, 24(4): 481-483. |
83 | Arca H C, Mosquera-Giraldo L I, Bi V, et al. Pharmaceutical applications of cellulose ethers and cellulose ether esters[J]. Biomacromolecules, 2018, 19(7): 2351-2376. |
84 | 何亮, 柴欣生. 纤维素纤维溶解体系的历史沿革及研究进展[J]. 造纸科学与技术, 2017, 36(4): 35-43. |
He L, Chai X S. The historical evolution and research situation of the dissolution processes of cellulosic fibers[J]. Paper Science & Technology, 2017, 36(4): 35-43. | |
85 | 石岭, 李明明. 以离子液体为溶剂的柚皮羧甲基纤维素的制备及其性能表征探讨[J]. 食品安全导刊, 2019(21): 143. |
Shi L, Li M M. Preparation and characterization of carboxymethyl cellulose from pomelo peel with ionic liquid as solvent[J]. China Food Safety Magazine, 2019(21): 143. | |
86 | 孔兴杰, 贾彩, 李坤兰, 等. 离子液体中羟丙基纤维素的合成[J]. 化工学报, 2013, 64(S1): 73-79. |
Kong X J, Jia C, Li K L, et al. Synthesis study on hydroxypropyl cellulose in ionic liquids[J]. CIESC Journal, 2013, 64(S1): 73-79. | |
87 | Kostag M, Gericke M, Heinze T, et al. Twenty-five years of cellulose chemistry: innovations in the dissolution of the biopolymer and its transformation into esters and ethers[J]. Cellulose, 2019, 26(1): 139-184. |
88 | Tian W G, Zhang J M, Yu J, et al. Cellulose-based solid fluorescent materials[J]. Advanced Optical Materials, 2016, 4(12): 2044-2050. |
89 | Jia R N, Tian W G, Bai H T, et al. Sunlight-driven wearable and robust antibacterial coatings with water-soluble cellulose-based photosensitizers[J]. Advanced Healthcare Materials, 2019, 8(5): 1801591. |
90 | Yang L L, Zhang J M, He J S, et al. Fabrication, hydrolysis and cell cultivation of microspheres from cellulose-graft-poly(l-lactide) copolymers[J]. RSC Advances, 2016, 6(21): 17617-17623. |
91 | Sui X F, Yuan J Y, Zhou M, et al. Synthesis of cellulose-graft-poly(N, N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media[J]. Biomacromolecules, 2008, 9(10): 2615-2620. |
92 | Meng T, Gao X, Zhang J, et al. Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose[J]. Polymer, 2009, 50(2): 447-454. |
93 | Yang L L, Zhang J M, He J S, et al. Synthesis and characterization of temperature-sensitive cellulose-graft-poly(N-isopropylacrylamide) copolymers[J]. Chinese Journal of Polymer Science, 2015, 33(12): 1640-1649. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[3] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[9] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[10] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[11] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[12] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[13] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[14] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[15] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 550
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 536
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||