化工学报 ›› 2020, Vol. 71 ›› Issue (11): 5107-5116.DOI: 10.11949/0438-1157.20200393

• 流体力学与传递现象 • 上一篇    下一篇

湿气管道积液临界气速预测的新模型

李国豪(),邓道明(),宫敬   

  1. 中国石油大学(北京)油气管道输送安全国家工程实验室,石油工程教育部重点实验室,城市油气输配技术北京市 重点实验室,北京 102249
  • 收稿日期:2020-04-14 修回日期:2020-07-01 出版日期:2020-11-05 发布日期:2020-11-05
  • 通讯作者: 邓道明
  • 作者简介:李国豪(1996—),男,硕士研究生,lghOGST@163.com
  • 基金资助:
    国家科技重大专项(2016ZX05066-005-001,2016ZX05028-004-001)

A new model of critical gas velocities for liquid accumulations in wet gas pipelines

Guohao LI(),Daoming DENG(),Jing GONG   

  1. China National Engineering Laboratory for Pipeline Safety, MOE Key Laboratory of Petroleum Engineering, Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum, Beijing 102249,China
  • Received:2020-04-14 Revised:2020-07-01 Online:2020-11-05 Published:2020-11-05
  • Contact: Daoming DENG

摘要:

气田开发经常采用湿气集输方案。针对湿气输送管道出现的积液问题,基于分层流最小界面剪切应力准则,利用气液平界面分层流液膜区的速度分布规律,建立了求解积液临界气速的新机理模型。由分层流液膜区的流场描述和气相动量方程得到气液界面剪切应力的表达式;利用界面剪切应力函数曲线特性,可以通过界面剪切应力关于持液率求导获得临界气速。以不同文献中收集的临界气速实验数据,对新模型和其他具有代表性的湿气管道积液模型进行验证对比,表明新模型的预测精度要优于其他模型。

关键词: 湿气管道, 分层流, 最小界面剪切应力, 积液, 临界气速

Abstract:

Gas field development often adopts wet gas gathering and transportation schemes. Based on minimum interfacial shear stress criterion and velocity profile in liquid film with flat gas-liquid interface for stratified pipe flow, a new model for predicting the critical gas velocity is developed to find out when liquid accumulations occur in wet gas pipelines. The formula of interfacial shear stress is deduced from combination of liquid-film flow field description with gas momentum equation. After the surface of interfacial shear stress is demonstrated, the critical gas velocity can be easily obtained by derivation of interfacial shear stress with respect to liquid holdup. The new model is compared with other three typical models to evaluate their agreements with experimental critical gas velocities, and shows the best prediction precision.

Key words: wet gas pipeline, stratified flow, minimum interfacial shear stress, liquid accumulation, critical gas velocity

中图分类号: