化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1318-1330.DOI: 10.11949/j.issn.0438-1157.20180851
收稿日期:
2018-07-25
修回日期:
2019-01-17
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
邓道明
作者简介:
<named-content content-type="corresp-name">沈伟伟</named-content>(1994—),男,硕士研究生,<email>swwogst@163.com</email>|邓道明(1965—),男,博士,副教授,<email>ddmmpf@cup.edu.cn</email>
基金资助:
Weiwei SHEN1(),Daoming DENG1(),Qiaoping LIU2,Jing GONG1
Received:
2018-07-25
Revised:
2019-01-17
Online:
2019-04-05
Published:
2019-04-05
Contact:
Daoming DENG
摘要:
井筒积液是伴随气井生产的常见现象,积液会导致气井产量降低,严重时甚至会使得气井停产。精确的积液预测有助于及时采取措施以减少积液带来的危害,而临界气体流速是气井积液预测的关键。回顾了气井积液预测的相关研究,指出了最小压降模型、液滴模型的局限性,基于现有实验观察认为液膜模型有较好的适用性。考虑到斜井中液膜周向不均匀分布及气相核心中液滴夹带,提出了更符合实际的环雾流模型用于不同管径、不同井斜角下的气井积液预测。基于以往室内实验数据和现场生产数据,将新模型与现有6种积液预测模型进行对比评价。综合考虑模型预测结果正确率及预测误差,认为新的环雾流模型较其他模型预测结果更优,可准确方便地对气井积液进行预测。
中图分类号:
沈伟伟, 邓道明, 刘乔平, 宫敬. 基于环雾流理论的气井临界流速预测模型[J]. 化工学报, 2019, 70(4): 1318-1330.
Weiwei SHEN, Daoming DENG, Qiaoping LIU, Jing GONG. Prediction model of critical gas velocities in gas wells based on annular mist flow theory[J]. CIESC Journal, 2019, 70(4): 1318-1330.
Model | Average prediction error/% | Standard deviation of prediction error/% |
---|---|---|
new model | 3.23 | 9.24 |
Barnea model | -20.12 | 23.64 |
Luo model | 26.40 | 19.16 |
Turner model | -0.68 | 56.43 |
Belfroid model | -30.0 | 9.81 |
MulFlow(flow regime transition) | 2.95 | 40.87 |
MulFlow(minimum shear stress) | 4.45 | 33.37 |
表1 各模型平均预测误差及预测误差的标准差
Table 1 Average prediction errors and standard deviation of prediction errors for each model
Model | Average prediction error/% | Standard deviation of prediction error/% |
---|---|---|
new model | 3.23 | 9.24 |
Barnea model | -20.12 | 23.64 |
Luo model | 26.40 | 19.16 |
Turner model | -0.68 | 56.43 |
Belfroid model | -30.0 | 9.81 |
MulFlow(flow regime transition) | 2.95 | 40.87 |
MulFlow(minimum shear stress) | 4.45 | 33.37 |
Model | Correct prediction count of gas well state(loading) | Correct prediction count of gas well state(unloading) | Total correct prediction count of gas well state |
---|---|---|---|
new model | 32/37 | 47/53 | 79/90 |
Barnea model | 37/37 | 41/53 | 78/90 |
Luo model | 37/37 | 38/53 | 75/90 |
Turner model | 28/37 | 51/53 | 79/90 |
Belfroid model | 15/37 | 52/53 | 67/90 |
MulFlow(flow regime transition) | 30/37 | 47/53 | 77/90 |
MulFlow(minimum shear stress) | 37/37 | 28/53 | 65/90 |
表2 各模型对Turner数据气井状态的正确预测数
Table 2 Correct prediction count of gas well states for Turner data with each model
Model | Correct prediction count of gas well state(loading) | Correct prediction count of gas well state(unloading) | Total correct prediction count of gas well state |
---|---|---|---|
new model | 32/37 | 47/53 | 79/90 |
Barnea model | 37/37 | 41/53 | 78/90 |
Luo model | 37/37 | 38/53 | 75/90 |
Turner model | 28/37 | 51/53 | 79/90 |
Belfroid model | 15/37 | 52/53 | 67/90 |
MulFlow(flow regime transition) | 30/37 | 47/53 | 77/90 |
MulFlow(minimum shear stress) | 37/37 | 28/53 | 65/90 |
Model | Average prediction error/% | Standard deviation of prediction error/% | Correct prediction count of gas well state |
---|---|---|---|
new model | 8.70 | 26.63 | 40/67 |
Barnea model | -4.12 | 22.10 | 22/67 |
Luo model | 51.29 | 37.11 | 62/67 |
Turner model | -42.57 | 14.16 | 1/67 |
Belfroid model | -38.69 | 15.54 | 1/67 |
MulFlow(flow regime transition) | -7.56 | 28.60 | 17/67 |
MulFlow(minimum shear stress) | 12.21 | 39.52 | 38/67 |
表3 Veeken数据各模型预测误差及气井状态正确预测数
Table 3 Prediction error and correct prediction count of gas well states for Veeken data with each model
Model | Average prediction error/% | Standard deviation of prediction error/% | Correct prediction count of gas well state |
---|---|---|---|
new model | 8.70 | 26.63 | 40/67 |
Barnea model | -4.12 | 22.10 | 22/67 |
Luo model | 51.29 | 37.11 | 62/67 |
Turner model | -42.57 | 14.16 | 1/67 |
Belfroid model | -38.69 | 15.54 | 1/67 |
MulFlow(flow regime transition) | -7.56 | 28.60 | 17/67 |
MulFlow(minimum shear stress) | 12.21 | 39.52 | 38/67 |
1 | Luo S . Inception of liquid loading in gas wells and possible solutions[D]. Tulsa: The University of Tulsa, 2013. |
2 | Chen D C , Yao Y , Fu G , et al . A new model for predicting liquid loading in deviated gas wells[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 178-184. |
3 | Belt R J . On the liquid film in inclined annular flow[D]. Delft: Technische Universiteit Delft, 2007. |
4 | Yuan G , Pereyra E , Sarica C , et al . An experimental study on liquid loading of vertical and deviated gas wells[C]//SPE Production and Operations Symposium. Oklahoma City, Oklahoma, USA: Society of Petroleum Engineers, 2013: SPE-164516-MS. |
5 | Fan Y , Pereyra E , Torres C , et al . Experimental study on the onset of intermittent flow and pseudo-slug characteristics in upward inclined pipes[C]//17th International Conference on Multiphase Production Technology. Cannes, France: BHR Group, 2015: BHR-2015-B1. |
6 | Skopich A , Pereyra E , Sarica C . Pipe-diameter effect on liquid loading in vertical gas wells[J]. SPE Production & Operations, 2015, 30(2): 164-176. |
7 | Brito R , Pereyra E , Sarica C . Effect of well trajectory on liquid removal in horizontal gas wells[J]. Journal of Petroleum Science and Engineering, 2017, 156: 1-11. |
8 | Turner R G , Hubbard M G , Dukler A E . Analysis and prediction of minimum flow rate for the continuous removal of liquid from gas wells[J]. Journal of Petroleum Technology, 1969, 21(11): 1475-1482. |
9 | Coleman S B , Clay H B , Mccurdy D G , et al . A new look at predicting gas-well load-up[J]. Journal of Petroleum Technology, 1991, 43(3): 329-333. |
10 | Nosseir M A , Darwich T A , Sayyouh M H , et al . A new approach for accurate prediction of loading in gas wells under different flowing conditions[J]. SPE Production & Facilities, 2000, 15(4): 241-246. |
11 | Guo B Y , Ghalambor A , Xu C . A systematic approach to predicting liquid loading in gas wells[J]. SPE Production and Operations Symposium, 2006, 21(1): 81-88. |
12 | Fadairo A , Femi-Oyewole D , Falode O A . An improved tool for liquid loading in a gas well[C]//SPE Nigerian Annual International Conference and Exhibition. Lagos, Nigeria: Society of Petroleum Engineers, 2013: SPE-167552-MS. |
13 | Fadairo A , Olugbenga F , Sylvia N C . A new model for predicting liquid loading in a gas well[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1530-1541. |
14 | Zhou D S , Yuan H . A new model for predicting gas-well liquid loading[J]. SPE Production & Operations, 2010, 25(2): 172-181. |
15 | Li M , Li S L , Sun L T . New view on continuous-removal liquids from gas wells[J]. SPE Production & Facilities, 2002, 17(1): 42-46. |
16 | Awolusi O S . Resolving discrepancies in predicting critical rates in low pressure stripper gas wells[D]. Lubbock: Texas Tech University, 2005. |
17 | 王毅忠, 刘庆文 . 计算气井最小携液临界流量的新方法[J]. 大庆石油地质与开发, 2007, 26(6): 82-85. |
Wang Y Z , Liu Q W . A new method for calculating the minimum critical flow rate of gas wells[J]. Petroleum Geology & Oilfield Development in Daqing, 2007, 26(6): 82-85. | |
18 | Belfroid S , Schiferli W , Alberts G , et al . Prediction onset and dynamic behaviour of liquid loading gas wells[C]//SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA: Society of Petroleum Engineers, 2008: SPE-115567-MS. |
19 | 杨文明, 王明, 陈亮, 等 . 定向气井连续携液临界产量预测模型[J]. 天然气工业, 2009, 29(5): 82-84. |
Yang W M , Wang M , Chen L , et al . A prediction model on calculation of continuous liquid carrying critical production of directional gas wells[J]. Natural Gas Industry, 2009, 29(5): 82-84. | |
20 | 于继飞, 管虹翔, 顾纯巍, 等 . 海上定向气井临界流量预测方法[J]. 特种油气藏, 2011, 18(6): 117-119. |
Yu J F , Guan H X , Gu C W , et al . Prediction of critical flow rate for offshore directional gas wells[J]. Special Oil & Gas Reservoirs, 2011, 18(6): 117-119. | |
21 | 李丽, 张磊, 杨波, 等 . 天然气斜井携液临界流量预测方法[J]. 石油与天然气地质, 2012, 33(4): 650-654. |
Li L , Zhang L , Yang B , et al . Prediction method of critical liquid carrying flow rate for directional gas wells[J]. Oil & Gas Geology, 2012, 33(4): 650-654. | |
22 | 王琦 . 水平井井筒气液两相流动模拟实验研究[D]. 成都: 西南石油大学, 2014. |
Wang Q . Experimental study on gas-liquid flowing in the wellbore of horizontal well[D]. Chengdu: Southwest Petroleum University, 2014. | |
23 | Keuning A . The onset of liquid loading in inclined tubes[D]. Eindhoven: Eindhoven University of Technology, 1998. |
24 | van t Westende J M C . Droplets in annular-dispersed gas-liquid pipe-flows[D]. Delft: Technische Universiteit Delft, 2008. |
25 | Veeken K , Hu B , Schiferli W . Gas-well liquid loading field data analysis and multiphase flow modeling[J]. SPE Production & Operations, 2010, 25(3): 275-284. |
26 | Zabaras G , Dukler A E , Moalem-Maron D . Vertical upward cocurrent gas‐liquid annular flow[J]. AIChE Journal, 1986, 32(5): 829-843. |
27 | Zhang H Q , Wang Q , Sarica C , et al . Unified model for gas-liquid pipe flow via slug dynamics(1): Model development[J]. Journal of Energy Resources Technology, 2003, 125(4): 266-273. |
28 | Zhang H Q , Wang Q , Sarica C , et al . Unified model for gas-liquid pipe flow via slug dynamics(2): Model validation[J]. Journal of Energy Resources Technology, 2003, 125(4): 811-820. |
29 | Barnea D , Shoham O , Taitel Y , et al . Gas-liquid flow in inclined tubes: flow pattern transitions for upward flow[J]. Chemical Engineering Science, 1985, 40(1): 131-136. |
30 | Barnea D . A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow, 1987, 13(1): 1-12. |
31 | Fore L B , Beus S G , Bauer R C . Interfacial friction in gas-liquid annular flow: analogies to full and transition roughness[J]. International Journal of Multiphase Flow, 2000, 26(11): 1755-1769. |
32 | Li J , Almudairis F , Zhang H . Prediction of critical gas velocity of liquid unloading for entire well deviation[C]//International Petroleum Technology Conference. Kuala Lumpur, Malaysia, 2014: IPTC-17846-MS. |
33 | Gurner M , Pereyra E , Sarica C , et al . An experimental study of low liquid loading in inclined pipes from 90° to 45°[C]//SPE Production and Operations Symposium. Oklahoma City, Oklahoma, USA: Society of Petroleum Engineers, 2015: SPE-173631-MS. |
34 | Alsaadi Y , Pereyra E , Torres C , et al . Liquid loading of highly deviated gas wells from 60° to 88°[C]//SPE Annual Technical Conference and Exhibition. Houston, Texas, USA: Society of Petroleum Engineers, 2015: SPE-174852-MS. |
35 | Andritsos N , Hanratty T J . Influence of interfacial waves in stratified gas-liquid flows[J]. AIChE Journal, 1987, 33(3): 444-454. |
36 | Shekhar S , Kelkar M , Hearn W J , et al . Improved prediction of liquid loading in gas wells[J]. SPE Production & Operations, 2017, 32(4): 539-550. |
37 | Paz R J , Shoham O . Film-thickness distribution for annular flow in directional wells: horizontal to vertical[J]. SPE Production & Operations, 1999, 4(2): 83-91. |
38 | Barnea D . Transition from annular flow and from dispersed bubble flow—unified models for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow, 1986, 12(5): 733-744. |
39 | Wallis G B . One-dimensional Two-phase Flow[M]. New York: McGraw-Hill, 1969: 315-367. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[7] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[8] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[9] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[10] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[11] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[12] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[13] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[14] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[15] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||