化工学报 ›› 2020, Vol. 71 ›› Issue (2): 788-798.DOI: 10.11949/0438-1157.20190832
张霄玲1,2(),于凤芹3,皇甫林2,王超3,李长明2,高士秋2,余剑2()
收稿日期:
2019-07-22
修回日期:
2019-10-05
出版日期:
2020-02-05
发布日期:
2020-02-05
通讯作者:
余剑
作者简介:
张霄玲(1995—),女,硕士研究生, 基金资助:
Xiaoling ZHANG1,2(),Fengqin YU3,Lin HUANGFU2,Chao WANG3,Changming LI2,Shiqiu GAO2,Jian YU2()
Received:
2019-07-22
Revised:
2019-10-05
Online:
2020-02-05
Published:
2020-02-05
Contact:
Jian YU
摘要:
以Fe-Zn基废脱硫剂、煤、Na 2CO 3为原料进行高温炭热还原反应,制备了铁碳材料,实现了Zn和S的分离,有望能实现废脱硫剂的综合利用。考察不同工艺条件(配比,温度,时间)对铁碳材料品质,Zn单质分离效率和Na 2S的收率影响。结果表明: 反应温度≥900℃,煤∶废脱硫剂≥1,Na 2CO 3∶废脱硫剂≥1.5,反应时长≥2 h,Zn、S的分离回收效率可达到95%以上。且900℃制备的铁碳材料比表面高达193.6 m 2/g,介孔孔体积为0.028 cm 3/g,炭均匀附着于铁骨架。微电解-芬顿联用降解有机废水实验表明:仅微电解或微电解-芬顿联用(H 2O 2=COD=1500 mg/L)时,自制铁碳材料的稳定化学需氧量(COD)去除效率(41.78%、73.56%)都高于商业铁碳(8.43%、48.43%)。本文实验结果表明废脱硫剂与煤和碳酸钠混烧可实现废脱硫剂中Zn与S的分离回收,成功获得了比表面高、去除COD性能好的铁碳材料。
中图分类号:
张霄玲, 于凤芹, 皇甫林, 王超, 李长明, 高士秋, 余剑. Fe-Zn基废脱硫剂制备铁碳材料及其对废水微电解性能[J]. 化工学报, 2020, 71(2): 788-798.
Xiaoling ZHANG, Fengqin YU, Lin HUANGFU, Chao WANG, Changming LI, Shiqiu GAO, Jian YU. Utilization of Fe-Zn-based waste desulfurizer to produce Fe-C materials for removing COD from waste water[J]. CIESC Journal, 2020, 71(2): 788-798.
Proximate analysis/%(mass) | Ultimate analysis/%(mass) | ||||||
---|---|---|---|---|---|---|---|
Ash | Volatile | Fixed carbon | C | H | O | N | S |
19.56 | 29.46 | 50.98 | 62.38 | 3.68 | 12.46 | 1.09 | 1.02 |
表1 不连沟煤的工业分析和元素分析
Table 1 Proximate and ultimate analysis of Buliangou coal
Proximate analysis/%(mass) | Ultimate analysis/%(mass) | ||||||
---|---|---|---|---|---|---|---|
Ash | Volatile | Fixed carbon | C | H | O | N | S |
19.56 | 29.46 | 50.98 | 62.38 | 3.68 | 12.46 | 1.09 | 1.02 |
Sample | Main elements/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
O | Fe | Zn | Al | Ti | Si | Na | Ca | S | Cl | 其他 | ||
waste desulfurizer | 36.11 | 21.69 | 10.75 | 0.105 | 0.156 | 0.770 | 2.570 | 2.860 | 13.48 | 9.980 | 1.529 | |
W-C900-3 | 34.37 | 25.77 | 14.48 | 0.145 | 0.210 | 1.160 | 2.675 | 3.170 | 10.01 | 6.830 | 1.180 | |
WC-C900-3 | 41.51 | 18.09 | 8.015 | 4.274 | 0.468 | 3.064 | 1.204 | 3.492 | 14.15 | 3.798 | 1.935 | |
WCN-C900-3 | 36.31 | 9.950 | 0.060 | 4.350 | 0.290 | 3.280 | 29.88 | 2.620 | 8.160 | 4.120 | 0.980 | |
Fe-C material | 36.23 | 28.77 | 0.232 | 5.342 | 0.752 | 7.698 | 1.770 | 6.464 | 0.804 | 0.372 | 11.56 | |
commercial Fe-C | 36.61 | 44.11 | 0.046 | 3.823 | 0.251 | 9.515 | 0.275 | 2.678 | 0.918 | 0.043 | 1.728 | |
C-C900-3 | 47.87 | 1.450 | 0.063 | 21.83 | 2.250 | 13.41 | 0.270 | 6.510 | 0.866 | 0.160 | 5.318 |
表2 废脱硫剂及经过不同热处理样品的XRF分析结果
Table 2 Main chemical composition of waste desulfurizer and samples through different thermal processes
Sample | Main elements/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
O | Fe | Zn | Al | Ti | Si | Na | Ca | S | Cl | 其他 | ||
waste desulfurizer | 36.11 | 21.69 | 10.75 | 0.105 | 0.156 | 0.770 | 2.570 | 2.860 | 13.48 | 9.980 | 1.529 | |
W-C900-3 | 34.37 | 25.77 | 14.48 | 0.145 | 0.210 | 1.160 | 2.675 | 3.170 | 10.01 | 6.830 | 1.180 | |
WC-C900-3 | 41.51 | 18.09 | 8.015 | 4.274 | 0.468 | 3.064 | 1.204 | 3.492 | 14.15 | 3.798 | 1.935 | |
WCN-C900-3 | 36.31 | 9.950 | 0.060 | 4.350 | 0.290 | 3.280 | 29.88 | 2.620 | 8.160 | 4.120 | 0.980 | |
Fe-C material | 36.23 | 28.77 | 0.232 | 5.342 | 0.752 | 7.698 | 1.770 | 6.464 | 0.804 | 0.372 | 11.56 | |
commercial Fe-C | 36.61 | 44.11 | 0.046 | 3.823 | 0.251 | 9.515 | 0.275 | 2.678 | 0.918 | 0.043 | 1.728 | |
C-C900-3 | 47.87 | 1.450 | 0.063 | 21.83 | 2.250 | 13.41 | 0.270 | 6.510 | 0.866 | 0.160 | 5.318 |
Sample | SBET/ (m 2/g) | Pore volume/(cm 3/g) | Pore size/nm | |
---|---|---|---|---|
Vtotal | Vmeso | |||
waste desulfurizer | 75.08 | 0.068 | 0.092 | 9.446 |
W-C900-3 | 12.38 | 0.012 | 0 | 3.915 |
WC-C900-3 | 84.97 | 0.108 | 0.009 | 16.39 |
WCN-C900-3 Fe-C material | 84.36 193.6 | 0.102 0.186 | 0.008 0.028 | 15.34 8.281 |
commercial Fe-C | 9.371 | 0.006 | 0.001 | 10.17 |
表3 不同样品的比表面,孔容及孔径结果
Table 3 Specific surface area and pore size distribution of different samples
Sample | SBET/ (m 2/g) | Pore volume/(cm 3/g) | Pore size/nm | |
---|---|---|---|---|
Vtotal | Vmeso | |||
waste desulfurizer | 75.08 | 0.068 | 0.092 | 9.446 |
W-C900-3 | 12.38 | 0.012 | 0 | 3.915 |
WC-C900-3 | 84.97 | 0.108 | 0.009 | 16.39 |
WCN-C900-3 Fe-C material | 84.36 193.6 | 0.102 0.186 | 0.008 0.028 | 15.34 8.281 |
commercial Fe-C | 9.371 | 0.006 | 0.001 | 10.17 |
Original pH | pH(Fe-C 1.5 h) | Fe 2+concentration/ (mg/L) | COD removal rate/% |
---|---|---|---|
1.5 | 1.83 | 471.2 | 82.68 |
2.0 | 2.57 | 204.6 | 72.15 |
2.5 | 4.00 | 85.74 | 59.56 |
3.0 | 5.42 | 27.89 | 39.69 |
5.0 | 6.30 | 0.2659 | 15.36 |
6.5 | 7.80 | 0.008412 | 14.56 |
表4 初始pH对铁碳材料微电解-芬顿联用处理有机废水的影响
Table 4 Effect of original pH on removal rate of COD via micro-electrolysis-Fenton in waste water
Original pH | pH(Fe-C 1.5 h) | Fe 2+concentration/ (mg/L) | COD removal rate/% |
---|---|---|---|
1.5 | 1.83 | 471.2 | 82.68 |
2.0 | 2.57 | 204.6 | 72.15 |
2.5 | 4.00 | 85.74 | 59.56 |
3.0 | 5.42 | 27.89 | 39.69 |
5.0 | 6.30 | 0.2659 | 15.36 |
6.5 | 7.80 | 0.008412 | 14.56 |
1 | 白静怡, 凌开成. 处理废脱硫剂的可行性研究[J]. 煤炭转化, 2002, 25( 3): 17- 20. |
Bai J Y, Ling K C. Feasibility study on disposal of waste desulfurizer [J]. Coal Conversion, 2002, 25( 3): 17- 20. | |
2 | Wang M M, Li T, Li H Y, et al. Desulfurization of hot coal gas over regenerable low-cost Fe 2O 3/mesoporous Al 2O 3 prepared by the sol gel method [J]. Energy & Fuels, 2017, 31( 12): 13921- 13932. |
3 | Lin C F, Qin W, Dong C Q. H 2S adsorption and decomposition on the gradually reduced alpha-Fe 2O 3(001) surface: a DFT study [J]. Applied Surface Science, 2016, 387: 720- 731. |
4 | 刘焕群. 氧化锌脱硫剂的回收利用[J]. 中国资源综合利用, 2001, ( 9): 12- 15. |
Liu H Q. Recovery and utilization of zinc oxide desulfurizer[J]. Comprehensive Utilization of Chinese Resources, 2001, ( 9): 12- 15. | |
5 | 马孟臣, 刘自民, 饶磊, 等. 烧结处理焦炉煤气废脱硫剂的研究与应用[J]. 烧结球团, 2017, 42( 1): 54- 57. |
Ma M C, Liu Z M, Rao L, et al. Study and application on the treatment of waste desulfurization for coke oven gas by sintering[J]. Sintering and Pelletizing, 2017, 42( 1): 54- 57. | |
6 | Ma J R, Liu Z Y, Liu S J, et al. A regenerable Fe/AC desulfurizer for SO 2 adsorption at low temperatures [J]. Applied Catalysis B-Environmental, 2003, 45( 4): 301- 309. |
7 | 陈燕彬. 国内外锌冶炼技术的现状及发展动向[J]. 世界有色金属, 2018, ( 15): 5- 6. |
Chen Y B. Present situation and development trend of zinc smelting technology at home and abroad[J]. Metallurgical Smelting, 2018, ( 15): 5- 6. | |
8 | 田秋月, 李聚. 常温氧化铁废脱硫剂回收处理方法的可行性研究[J]. 公用科技, 1995, ( 4): 14- 17. |
Tian Q Y, Li J. Feasibility study on utilization of waste iron oxide desulfurizer at room temperature[J]. Public Science and Technology, 1995, ( 4): 14- 17. | |
9 | 丁明雷, 刘建周, 段利叶, 等. 中温氧化锌脱硫剂再生及其织构研究[J]. 天然气化工(C1化学与化工), 2013, 38( 5): 67- 70. |
Ding M L, Liu J Z, Duan L Y, et al. Study on regeneration and texture of a mid-temperature zinc oxide desulfurizer[J]. Natural Gas Chemical Industy(C1 Chemistry and Chemical Engineering), 2013, 38( 5): 67- 70. | |
10 | 杨文刚. 废脱硫剂高温焙烧制酸技术的应用[J]. 燃料与化工, 2005, ( 1): 33. |
Yang W G. Application of high temperature roasting of waste desulfurizer to produce acid[J]. Fuel and Chemical Processes, 2005, ( 1): 33. | |
11 | 秦亚平. 用氮肥厂的废氧化锌脱硫剂生产七水硫酸锌[J]. 化工环保, 1997, ( 5): 31- 34. |
Qing Y P. Production of ZnSO 4•7H 2O from spent ZnO desulfurizer in nitrogen fertilizer plant [J]. Chemical Industry and Environmental Protection, 1997, ( 5): 31- 34. | |
12 | Guo Z Q, Pan J, Zhang F. Green and efficient utilization of waste ferric-oxide desulfurizer to clean waste copper slag by the smelting reduction-sulfurizing process[J]. Journal of Cleaner Production, 2018, 199: 891- 899. |
13 | Liang M S, Kang W K, Xie K C. Comparison of reduction behavior of Fe 2O 3, ZnO and ZnFe 2O 4 by TPR technique [J]. Journal of Natural Gas Chemistry, 2009, 18( 1): 110- 113. |
14 | 蒋洪静, 郭满囤. 我国表面活性剂LAS废水的处理技术进展[J]. 山西化工, 2008, 28( 1): 28- 31+51. |
Jiang H J, Guo M T. Development of treatment technology on LAS wastewater[J]. Shanxi Chemical Industry, 2008, 28( 1): 28- 31+51. | |
15 | 周丹, 张涛, 呼世斌. 水性油墨废水的活性炭吸附特性研究[J]. 环境科学与技术, 2007, ( 3): 85- 86. |
Zhou D, Zhang T, Hu S B. Adsorbing properties of activated carbon for treating water-based ink-manufacturing wastewater [J]. Environmental Science and Technology, 2007, ( 3): 85- 86. | |
16 | 冷彩凤, 王崟, 任龙飞. 光催化氧化法处理胶印油墨废水的研究[J]. 包装工程, 2016, 37( 23): 181- 185. |
Leng C F, Wang Y, Ren L F. Treatment of offset printing ink wastewater by photocatalytic oxidation process[J]. Packing Engineering, 2016, 37( 23): 181- 185. | |
17 | Wu B T, He C H, Yuan S J, et al. Hydrogen enrichment as a bioaugmentation tool to alleviate ammonia inhibition on anaerobic digestion of phenol-containing wastewater[J]. Bioresource Technology, 2019, 276: 97- 102. |
18 | 唐文伟, 曾新平, 胡中华. 芬顿试剂和湿式过氧化氢氧化法处理乳化液废水研究[J]. 环境科学学报, 2006, 26( 8): 1265- 1270. |
Tang W W, Zeng X P, Hu Z H. Study of Fenton’s reagent and wet hydrogen peroxide oxidation for treatment of emulsified wastewater[ J]. Acta Scientiae Circumstantiae, 2006, 26( 8): 1265- 1270. | |
19 | Liu W W, Tu X Y, Wang X P, et al. Pretreatment of coking wastewater by acid out, micro-electrolysis process with in situelectrochemical peroxidation reaction [J]. Chemical Engineering Journal, 2012, 200( 202): 720- 728. |
20 | 华松林, 何淦锋, 何明, 等. 线路板废水处理工艺的探讨[J]. 工业安全与环保, 2002, 28( 8): 15- 16. |
Hua S L, He G F, He M, et al. An approach to the wastewater treatment process of circuit board production[J]. Industrial Safety and Environmental Protection, 2002, 28( 8): 15- 16. | |
21 | Chao H, Fen P, Hai J G, et al. Efficient COD degradation of turpentine processing wastewater by combination of Fe-C micro-electrolysis and Fenton treatment: long-term study and scale up[J]. Chemical Engineering Journal, 2018, 351: 697- 707. |
22 | 宋忠忠, 李杰, 孙静. 铁碳微电解填料的研究及应用现状[J]. 绿色科技, 2017, ( 6): 48- 50+55. |
Song Z Z, Li J, Sun J. Research and application of iron carbon micro electrolysis filler[J]. Journal of Green Science and Technology, 2017, ( 6): 48- 50+55. | |
23 | Liu G D, Liu K, Zhang H T. Study of desulfurization with magnesite desulfurized under hot metal pretreatment[J]. Metalurgija, 2018, 57( 1/2): 35- 38. |
24 | Abramowitz H, Rao Y K. Direct reduction of zinc-sulfide by carbon and lime[J]. Mineral Processing and Extractive Metallurgy, 1978, 87: 180- 188. |
25 | 时永辉, 苏建文, 陈建华, 等. 微电解-Fenton 深度处理制药废水影响因素与参数控制[J]. 环境工程学报, 2014, 8( 3): 1106- 1112. |
Shi Y H, Su J W, Chen J H, et al. Influencing factors and parameters control on advanced treatment of pharmaceutical wastewater by micro-electrolysis-Fenton process[J]. Chinese Journal of Environmental Engineering, 2014, 8( 3): 1106- 1112. | |
26 | 仇雅丽, 李长明, 王德亮, 等. 赤泥/煤基铁炭材料的制备及其脱除废水Cr(Ⅵ)的性能[J]. 化工学报, 2018, 69( 7): 3216- 3225. |
Qiu Y L, Li C M, Wang D L, et al. Preparation of red mud/coal based material and its performance to remove Cr(Ⅵ) in waste water[J]. CIESC Journal, 2018, 69( 7): 3216- 3225. | |
27 | Yesiltepe S, Bugdayci M, Yucel O, et al. Recycling of alkaline batteries via a carbothermal reduction process [J]. Batteries, 2019, 5( 1): 35. |
28 | Liu W, Han J W, Qin W Q, et al. Reduction roasting of high iron bearing zinc calcine for recovery of zinc and iron[J]. Canadian Metallurgical Quarterly, 2014, 53( 2): 176- 182. |
29 | Holloway P C, Etsell T H, Murland A L. Roasting of La Oroya zinc ferrite with Na 2CO 3 [J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2007, 38( 5): 781- 791. |
30 | 高爱舫, 吴财松, 高鹏, 等. Fenton 试剂氧化处理油墨废水的条件优化[J]. 湖北农业科学, 2012, 51( 18): 3999- 4013. |
Gao A F, Wu C S, Gao P, et al. Optimization of treatment condition of printing-ink wastewater by Fenton’s reagent[J]. Hubei Agricultural Sciences, 2012, 51( 18): 3999- 4013. | |
31 | 沈欣军, 邹成龙, 孙美芳. 铁碳微电解技术处理实际印染废水[J]. 沈阳工业大学学报, 2018, 40( 4): 397- 401. |
Shen X J, Zou C L, Sun M F. Treatment of actual dyeing wastewater with iron-carbon micro-electrolysis technology[J]. Journal of Shenyang University of Technology, 2018, 40( 4): 397- 401. | |
32 | 许杰, 董岁明, 柴丽红, 等. 新型铁炭微电解材料的制备研究[J]. 应用化工, 2016, 45( 8): 1482- 1484+1487. |
Xu J, Dong S M, Chai L H, et al. Preparation research of micro-electrolysis material[J]. Applied Chemical Industry, 2016, 45( 8): 1482- 1484+1487. |
[1] | 王聪, 王淑莹, 张淼, 彭永臻, 曾薇. 多因素对反硝化除磷过程中COD、N和P的去除分析[J]. 化工学报, 2015, 66(4): 1467-1475. |
[2] | 昌盛, 李建政, 付青, 赵兴茹, 郑国臣. ACR在不同进水COD浓度下的产氢性能与菌群结构[J]. 化工学报, 2015, 66(3): 1156-1162. |
[3] | 昌盛, 刘枫. 对比分析进水基质浓度对乙醇型和丁酸型发酵制氢系统的影响[J]. 化工学报, 2015, 66(12): 5111-5118. |
[4] | 尹志轩, 谢丽, 王蕊, 周琪. 亚硝酸盐对厌氧产酸耦合反硝化工艺的影响[J]. 化工学报, 2014, 65(9): 3640-3646. |
[5] | 尹志轩, 谢丽, 王蕊, 周琪. 亚硝酸盐对厌氧产酸耦合反硝化工艺的影响[J]. 化工学报, 2014, 65(9): 0-0. |
[6] | 柯蓝婷, 王海涛, 王远鹏, 何宁, 李清彪. 不同来源家庭户用沼气池沼液成分分析及风险评价[J]. 化工学报, 2014, 65(5): 1840-1847. |
[7] | 秦娟 辛寅昌 马德华. 微乳液的油水分离和机理探讨及应用[J]. CIESC Journal, 2013, 64(5): 0-0. |
[8] | 秦娟, 辛寅昌, 马德华. 微乳液的油水分离和机理探讨及应用[J]. 化工学报, 2013, 64(5): 1797-1802. |
[9] | 祁佩时, 赵俊杰, 刘云芝, 李立君. Fenton试剂深度处理稠油石化废水的反应动力学 [J]. 化工学报, 2011, 62(2): 490-494. |
[10] | 陈伟林,邱文杰,陈伟丽,林津冰. 催化湿式氧化法处理垃圾渗滤液 [J]. CIESC Journal, 2010, 29(9): 1775-. |
[11] | 陈捷, 冯威, 刘延, 王丽, 田斌. 有机膨润土的制备与表征及吸附港口含油废水性能 [J]. 化工学报, 2008, 59(1): 228-231. |
[12] | 刘越男,金 栋,吕效平,韩萍芳. 超声波内环流气升式反应器处理印染废水 [J]. CIESC Journal, 2007, 26(12): 1808-. |
[13] | 范晓丹,张襄楷,杨虹莹. 污泥活性炭的制备及其脱色性能 [J]. CIESC Journal, 2007, 26(12): 1804-. |
[14] | RafDewila,JanBaeyensandRebeccaGoutvrindc. The Use of Ultrasonics in the Treatment of Waste Activated Sludge[J]. CIESC Journal, 2006, 14(1): 105-113. |
[15] | 李清彪, 廖鑫凯, 吴志旺, 邓旭, 黄益丽, 卢英华, 孙道华, 洪铭嫒, 王琳. 高浓度淀粉废水水解——好氧循环一体化处理工艺的初步研究[J]. CIESC Journal, 2004, 12(1): 108-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||